已知数列{an}满足a1=1⼀2,a1+a2+......+an=n^2an,用数学归纳法证明:an=1⼀n(n+1)

2024-12-15 04:14:10
推荐回答(1个)
回答1:

1、n=1是a1=1/2满足
n=2时a2+a1=4a2得a2=1/3满足
2、设n=k时ak=1/k(k+1)=1/k-1/(k+1)
n=k+1时a1+a2+a3……+ak+ak+1=(k+1)^2*ak+1
1/1-1/2+1/2-1/3……+1/k-1/(k+1)=k(k+2)ak+1
1-1/k+1=k(k+2)ak+1
所以ak+1=1/(k+1)(k+2)
有1,2得an=1/n(n+1)