1、n=1是a1=1/2满足n=2时a2+a1=4a2得a2=1/3满足2、设n=k时ak=1/k(k+1)=1/k-1/(k+1)n=k+1时a1+a2+a3……+ak+ak+1=(k+1)^2*ak+11/1-1/2+1/2-1/3……+1/k-1/(k+1)=k(k+2)ak+11-1/k+1=k(k+2)ak+1所以ak+1=1/(k+1)(k+2)有1,2得an=1/n(n+1)