已知等差数列{a n }的公差大于0,且a 2 ,a 5 是方程x 2 -12x+27=0的两根,数列{b n }的前n项和为S n ,

2024-12-19 15:03:31
推荐回答(1个)
回答1:

(1)因为a 2 ,a 5 是方程x 2 -12x+27=0的两根且等差数列{a n }的公差大于0,
所以解得a 2 =3,a 5 =9,所以公差 d=
a 5 - a 2
5-2
=2
,所以a n =a 2 +(n-2)d=2n-1.
当n=1时, b 1 = S 1 =
1- b 1
2
,解得 b 1 =
1
3

当n≥2时, b n = S n - S n-1 =
1
2
( b n-1 - b n )

所以
b n
b n-1
=
1
3
(n≥2)
,所以数列{b n }是以b 1 为首项,公比 q=
1
3
的等比数列,
所以 b n = b 1 q n-1 = (
1
3
)
n
=
1
3 n

(2)由(1)知, c n = a n b n =
2n-1
3 n
,则数列{c n }的前n项和为T n
T n =
1
3
+
3
3 2
+…+
2n-1
3 n
  ①
1
3
T n =
1
3 2
+
3
3 3
+…+
2n-1
3 n+1
 ②
①-②得
2
3
T n =
1
3
+
2
3 2
+
2
3 3
+…+
2
3 n
-
2n-1
3 n+1

=
1
3
+
2
3 2
[1- (
1
3
)
n-1
]
1-
1
3
-
2n-1
3 n+1

整理得 T n =1-
n+1
3 n+1
,因为n∈N ? ,所以
n+1
3 n+1
>0

T n =1-
n+1
3 n+1
<1