已知函数f(x)=-x3+3x2+9x+a在区间[-2,2]上的最大值为20,则最小值为______

2025-01-02 19:24:37
推荐回答(1个)
回答1:

∵f′(x)=-3x2+6x+9.
令f′(x)<0,解得x<-1或x>3,
所以函数f(x)的单调递减区间为(-∞,-1),(3,+∞).
∵f(-2)=8+12-18+a=2+a,f(2)=-8+12+18+a=22+a,
∴f(2)>f(-2).
因为在(-1,3)上f′(x)>0,所以f(x)在[-1,2]上单调递增,
又由于f(x)在[-2,-1]上单调递减,
因此f(2)和f(-1)分别是f(x)在区间[-2,2]上的最大值和最小值,于是有22+a=20,解得a=-2.
故f(x)=-x3+3x2+9x-2,因此f(-1)=1+3-9-2=-7,
即函数f(x)在区间[-2,2]上的最小值为-7,
故答案为:-7.