(1-1/4)(1-1/9)(1-1/16)......(1-1/100)
=[(1-1/2)(1+1/2)][(1-1/3)(1+1/3)]......[(1-1/10)(1+1/10)]
=1/2*3/2*2/3*4/3*......*9/10*11/10
=1/2*11/10
=11/20
(1—1/4)= 1 - (1/2)^2 ....(1/4 是 1/2的平方)
= (1 + 1/2) * (1 -1/2) = 3/2 * 1/2
类似分解可得如下
(1 - 1/4)*(1-1/9)* .... * (1 - 1/100)
= 3/2 * 1/2 * 4/3 * 2/3 * 5/4 * 3/4 * .... 11/10 * 9/10
(整理一下位置就可以看到存在可以相互抵消的)
= 1/2 * 3/2 * 2/3 * 4/3 * 3/4 * 5/4 * ..... 10/9 * 9/10 * 11/10
= 1/2 *11/10
=11/20
3/4 * 8/9 * ... * 99/100
= 1*3*2*4*3*5*...*9*11/(2*3*4...*10)^2
= 11/(2*100)=11/200