的确想了一会儿,不过问题不大。^-^
令1111=a,1112=b,2223=a+b;
原式=(a+b)^3+b^3/(a+b)^3+a^3
=a^3+3a^2b+3ab^2+b^3+b^3/a^3+3a^2b+3ab^2+b^3+a^3
=a^3+3a^2b+3ab^2+2b^3/2a^3+3a^2b+3ab^2+b^3
最关键的一步到了,
=(a+2b)(a^2+b^2+ab)/(2a+b)(a^2+b^2+ab)
=(a+2b)/(2a+b)
带入,得:
=3335/3334
如有疑问,请追问,麻烦采纳下,谢谢!
2223^3+1112^3=3*(2223+1112)=3*3335
2223^3+1111^3=3*(2223+1111)=3*3334
(2223^3+1112^3)/(2223^3+1111^3)
= (3*3335)/(3*3334)
=3335/3334
=1又3334分之1
(2223^3+1112^3)/(2223^3+1111^3)
=(10985463567+1375036928)/(10985463567+1371330631)
=12360500495/12356794198
=3335/3334
=1.0002999400119976004799040191962......
结果为1.000299940012
精确到小数点后12位