(1)∵
f(x)=lim x→0+
(x2?1)=?1,lim x→0+
f(x)=lim x→0?
(?1)=?1,lim x→0?
f(x)=lim x→0+
f(x)=?1,lim x→0?
又f(0)=02-1=-1.
∴f(x)在x=0处有极限且连续.
(2)
f(x)=lim x→1+
(x+3)=4,lim x→1+
f(x)=lim x→1?
(x2?1)=0,lim x→1?
∴
f(x)≠lim x→1+
f(x),即f(x)在x=1处极限不存在,也不连续;lim x→1?
x=2在f(x)的连续区间(1,+∞)内,
故f(x)在x=2处是连续的.