1/2+1/3+1/4+1/5+1/6+1/7+1/8+1/9+......+1/100≈ln100+C(C=0.57722......)。
这是1/n求和,没有公式计算的。自然数的倒数组成的数列,称为调和数列。人们已经研究它几百年了。但是迄2019年为止没有能得到它的求和公式,只是得到它的近似公式(当n很大时):
1+1/2+1/3+......+1/n≈lnn+C(C=0.57722......一个无理数,称作欧拉初始,专为调和级数所用)。
扩展资料
分数加减法
1、同分母分数相加减,分母不变,即分数单位不变,分子相加减,能约分的要约分。
2、异分母分数相加减,先通分,即运用分数的基本性质将异分母分数转化为同分母分数,改变其分数单位而大小不变,再按同分母分数相加减法去计算,最后能约分的要约分。
乘除法
1、分数乘整数,分母不变,分子乘整数,最后能约分的要约分。
2、分数乘分数,用分子乘分子,用分母乘分母,最后能约分的要约分。
3、分数除以整数,分母不变,如果分子是整数的倍数,则用分子除以整数,最后能约分的要约分。
4、分数除以整数,分母不变,如果分子不是整数的倍数,则用这个分数乘这个整数的倒数,最后能约分的要约分。
5、分数除以分数,等于被除数乘除数的倒数,最后能约分的要约分。
这是用程序计算的代码
const n=100;
var i:longint;
s:extended;
begin
{N+};
s:=0;
for i:=1 to n do
s:=s+1/i;
writeln(s);
readln
end.
抱歉看错了,首项是1/2,我的sn再减1就可以啦
这是用程序计算的代码:
#include "stdafx.h"
int main()
{
int i;
float sum=0;
for(i=2;i<=100;i++)
{
sum+=1.0/i;
}
printf("和为%f\n",sum);
return 0;
}
这是1/n求和,没有公式计算的
自然数的倒数组成的数列,称为调和数列.人们已经研究它几百年了.但是迄今为止没有能得到它的求和公式只是得到它的近似公式(当n很大时):
1+1/2+1/3+......+1/n≈lnn+C(C=0.57722......一个无理数,称作欧拉初始,专为调和级数所用)
人们倾向于认为它没有一个简洁的求和公式.
但是,不是因为它是发散的,才没有求和公式.相反的,例如等差数列是发散的,公比的绝对值大于1的等比数列也是发散的,它们都有求和公式.
1/2+1/3+1/4+1/5+1/6+1/7+1/8+1/9+......+1/100
≈4.187
sum(1/k)(k=2..n)是没有公式的,只有一个近似公式
sum(1/n) (k=2..n) ≈ ln(n)-ln(2),是利用积分的方法得到的,但是也不够精确。比如本题用近似公式只能得到 ln(100)-ln(2)≈3.912, 而不是4.187。