1.电力谐波在高压\中压\低压都会产生(跟电压等级无关,只是跟处理方法有关)
2.有源滤波器与无源滤波器的区别:有源滤波器是指用晶体管或运放构成的包含放大和反馈的滤波器, 无源滤波器是指用电阻/电感/电容等无源元件构成的滤波器. 在小信号下都有 EMC 问题, 当然有源滤波器要考虑供电电源的 EMC 问题, 而无源的就没有电源问题了.
3.无功、有功与谐波的关系:相互制约相互依存
4.有源滤波器能检测什么样的电力谐波:
有源电力滤波器是一种新型的电力电子装置,可以对电力系统中的谐波进行补偿。和传统的谐波补偿方法相比,有源滤波器具有巨大的技术优势和良好的发展前景。由于有源滤波器具有实时性和准确性的工作特点,如果再结合信号处理和控制技术等学科的优点,就可在实现对有源电力滤波器功能优化的同时,提高有源电力滤波器的性能。瞬时无功功率理论在电力有源器中获得了成功的应用。但是由于瞬时无功功率理论需要两次坐标变换,会使控制系统的计算量非常之大,会出现计算延时,并不能实现真正意义上的瞬时控制。本文主要研究了谐波实时快速检测问题。 1.提出了一类基于重采样和均值滤波的谐波检测法。本文首先从瞬时无功功率理论入手,分别讨论了应用于三相和单相电路的瞬时无功功率理论,分析了瞬时无功功率理论的本质,提出了基于重采样和均值滤波的谐波检测法。该滤波器为一具有线性相位的有限冲激响应(FIR)数字滤波器,可以使得应用于三相电路的控制系统在三分之一个周期处就跟随电网的变化,单相电路的控制系统在一个周期处就跟随电网的变化;重采样理论将被测量信号频谱分成有效信号频谱和无效信号频谱,提出了有效信号频谱不允许混叠,无效信号频谱允许混叠的采样频率确定新方法。
5.FIR.IIR模拟滤波器能检测什么样的电力谐波?如何检测?
0 引言
近年来,有源滤波器已成为电力系统研究领域中的热点。在各种电力有源滤波器中,基波或谐波检测是一个重要的环节。目前研究最为广泛的基波或者谐波检测方案,是基于瞬时无功功率理沦的谐波检测方法,这种方法要用到低通或高通滤波器,滤波器阶数越高,检测精度越高,动态过程就越长,即存在检测精度和检测实时性的矛盾。而传统的离散傅立叶变换由于固有的一个周期延迟。并且计算量大,被认为不能实时补偿电力系统谐波。
基于数字带通滤波器的谐波检测是一种很好的瞬时谐波检测方法,可以准确有效地从负载电流中分离出基波分量。本文通过分析和实验证明了这种方法的可行性,并且讨论了带通滤波器的设计方法。
1 模拟和数字带通滤波器的比较
模拟带通滤波器一般是用电路元件(如电阻、电容、电感)来构成我们所需要的频率特性电路。模拟带通滤波器的原理是通过对电容、电阻和电感参数的配置,使得模拟滤波器对基波呈现很小的阻抗,而对谐波呈现很大的阻抗,这样当负载电流信号通过该模拟带通滤波器的时候就可以把基波信号提取出来。目前,有些有源滤波器利用模拟电路实现带通滤波器检测负载电流的基波分量,并且在实际中得到了应用。
但是,模拟带通滤波器也有一些自身的缺点。这是由于模拟滤波器的中心频率对电路元件(如电容,电阻,电感)的参数十分敏感,较难设计出合适的参数,而且电路元件的参数会随外界环境的干扰发生变化,这会导致中心频率的偏移,影响滤波结果的准确性。
数字带通滤波器就是用软件来实现上面的滤波过程,可以很好地克服模拟滤波器的缺点,数字带通滤波器的参数一旦确定,就不会发生变化,只要电网的波动频率在我们设计的范围之内,就可以比较好地提取出基波分量。
2 基于带通滤波器的谐波检测原理
以二阶带通滤波器为例,二阶带通滤波器传递函数的典型表达式为
式中:ωo=2πfo,是中心角频率,fo是中心频率;Q是品质因数。
当ω=ωo时,H(iωo)=1。这说明带通滤波器在中心角频率ωo处的幅值尤衰减,相位无延时,这是带通滤波器的重要特性。这一特性保证了基于带通滤波器的谐波检测方法的准确性。
在有源滤波器里我们选择带通滤波器的中心频率fo为50Hz,则带通滤波器对基波幅疽无衰减,相位无延时,其它次谐波均被滤除,这就能实时地检测出基波。负载电流ia、ib、ic通过带通滤波器得到三相的基波电流ia1、ib1、ic1,用负载电流减去基波电流即可得到三相的谐波电流iah、ibh、ich。据此,谐波电流检测原理如图1所示。这种检测方法不需要坐标变换,只需要对三相电流分别进行带通滤波,大大减少了计算量。
3 数字带通滤波器的设计与实现
数字滤波器根据其类型可以分为IIR型和FIR型。PIR型只有零点,不容易像IIR型那样取得比较好的通带与阻带特性.所以,在一般的设计中选用IIR型。IlR型又可以分成Butterworth型滤波器,Chebyshev I型滤波器,Chcbyshev Ⅱ型滤波器和椭圆型滤波器等。MATLAB工具箱里面的数字滤波器设计工具FDATool可以帮助大家方便地选择和设计所需要的数字滤波器。
数字带通滤波器的主要参数包括阶数、滤波器类型、两个截止频率等。高阶滤波器的阻带衰减特性很好,但是,阶数高了之后难以实现。而对于有源滤波器来说,基波和主要谐波的频率相隔比较大,所以对阻带衰减率的要求不是很高,选用2阶滤波器就可以满足条件;又因为Buttermorth滤波器在通带内特性较平,而且实现起来比较简单,经综合考虑后,选用2阶Butterworth带通滤波器。
滤波器截止频率的选取和品质因数Q密切相关。Q越大,对谐波衰减越快,经带通滤波器提取出的基波分量越精确;但是,Q越大,带宽越小,动态响应速度会越慢,还会使数字滤波器的参数相差倍数过大,将增高对字长的要求。带通滤波器的通带宽度BW=ωo/(2πQ)=fo/Qofo是系统的中心频率。这里我们Q取在5左右,使得带宽大概在10Hz左右。选取两个截止频率分别为45Hz和55.6Hz。这里要注意的是。由于带通滤波器的幅频特性的不对称性,中心频率并不是两个截止频率的平均值。两个截止频率的选取标准是保证50Hz中心频率的相移为O并且幅值没有衰减。根据上面的标准设计出滤波器传递函数为
滤波器的幅频和相频特性如图2及图3所示。
带通滤波器的实现就是在DSP芯片中实现式(2)的传递函数,为了便于程序实现,将式(2)改成差分方程的形式,如式(3)所示。
y(n)=0.003319x(n)-0.003319x(n-2)+1.9924y(n-1)-O.9934y(n-2) (3)
用DSP实现上面的差分方程主要是用3个存储器单元来保存x(n),x(n-1),x(n-2)的值,3个存储单元存储y(n),y(n-1),y(n-2)的值,在每一次中断程序中根据式(3)更新这6个存储单元的数值,最后输出的y(n)就是滤波之后的基波数值。如果采用其他形式的滤波器所需要的中间存储单元的数目可能是不一样的,要根据差分方程里面x(n)和y(n)的项数来确定。
如果带通滤波器程序是在定点DSP实现的话,还要注意滤波器系数的小数点位置选择。数字滤波器系数对滤波器性能影响非常大,一旦滤波器参数相差哪怕是很小一点,滤波器的输出就可能和正确数值相差很远,有时候还可能会使得系统不稳定,所以,应该尽量把系数放大之后冉计箅。这里我们根据3个系数(0.003319,1.9924,O.9934)和DSP(16位定点)的特点,把所有的系数都放大214倍,滤波运算结束之后再缩小214倍,使汁算的结果尽量准确。在滤波器实现中要根据滤波器系数来选择适当的放大倍数,原则就是尽量用满处理器的位数(这里就是16位),这一点非常重要。
4 系统仿真和试验结果
实验系统为三相并联型有源滤波器。检测部分的框图如图4所示,其中虚线部分是直流侧电压控制部分。系统的原理是:首先,负载电流通过带通滤波器之后得到基波电流ia1、ib1、ic1;然后,叠加上维持直流侧电压所需要的有功电流△iap、△ibp、△icp,再从总的负载电流中减去这部分电流,得到的就是三相指令电流值;最后,对指令电流值进行PI调节控制逆变器的输出,将谐波电流反相注入电网,使得电网的电流基本为正弦波。
系统仿真采用MATLAB里面的Simulink模块,仿真的结果如图5所示。从图5可以看出,补偿之后的电网电流比补偿以前的电流波形大大改善。
实验样机容量设计为6kW,输入电压为三相380V,负载为三相不控整流桥.控制部分以TI公司的TMS320LF2407 DSP为核心,负责谐波电流计算和PWM输出控制。
程序主要部分是在AD采样中断里面完成的,在AO中断程序里,首先根据三相的电压和电流采样数值,利用式(3)计算出滤波以后的电流,再汁算出指令电流值,最后通过PI调节之后送给PWM发生电路,控制逆变器的输出。
图6是程序的中间计算结果,图中1为DSP采样的电网电压,2为DSP采样的负载电流,3是负载电流通过带通滤波器得到的基波分量,从图6中可以看出,带通滤波器可以很好地分离出负载电流的基波分量。
图7为系统的实验波形,其中图7(a)为有源滤波器投入前的电网电压和电流波形,图7(b)是有源滤波器投入后的电网电压和电流波形,从图7(b)可以看出,基于带通滤波器的有源滤波器能起到很好的谐波抑制作用。
5 结语
本文提出了一种基于带通滤波器的谐波检测方法,并通过仿真和实验验证了这种方法在并联型有源滤波器中应用的可行性。得到的主要结论如下:
1)利用带通滤波器可以比较好地检测出负载电流中的基波分量;
2)由于滤波器负载电流一般没有偶次谐波,如果是三相对称系统也没有3次以及3的倍数次谐波,所以,只要带通滤波器的中心频率是50Hz,带宽对系统的影响不是很大,但是,带通滤波器的相频特性对系统的影响比较大;
3)试验证明基于带通滤波器的并联型有源滤波器可以有效抑制电网的谐波电流,但是,这种方法的缺点是它不能同时补偿无功功率。
1.高次谐波产生的根本原因是由于电力系统中某些设备和负荷的非线性特性,即所加的电压与产生的电流不成线性(正比)关系而造成的波形畸变。当电力系统向非线性设备及负荷供电时,这些设备或负荷在传递(如变压器)、变换(如交直流换流器)、吸收(如电弧炉)系统发电机所供给的基波能量的同时,又把部分基波能量转换为谐波能量,向系统倒送大量的高次谐波,使电力系统的正弦波形畸变,电能质量降低。当前,电力系统的谐波源主要有三大类。1)、铁磁饱和型:各种铁芯设备,如变压器、电抗器等,其铁磁饱和特性呈现非线性。2)、电子开关型:主要为各种交直流换流装置(整流器、逆变器)以及双向晶闸管可控开关设备等,在化工、冶金、矿山、电气铁道等大量工矿企业以及家用电器中广泛使用,并正在蓬勃发展;在系统内部,如直流输电中的整流阀和逆变阀等。3)、电弧型:各种冶炼电弧炉在熔化期间以及交流电弧焊机在焊接期间,其电弧的点燃和剧烈变动形成的高度非线性,使电流不规则的波动。其非线性呈现电弧电压与电弧电流之间不规则的、随机变化的伏安特性。对于电力系统三相供电来说,有三相平衡和三相不平衡的非线性特性。后者,如电气铁道、电弧炉以及由低压供电的单相家用电器等,而电气铁道是当前中压供电系统中典型的三相不平衡谐波源。谐波对电网的影响:1、谐波对旋转设备和变压器的主要危害是引起附加损耗和发热增加,此外谐波还会引起旋转设备和变压器振动并发出噪声,长时间的振动会造成金属疲劳和机械损坏。2、谐波对线路的主要危害是引起附加损耗。3、谐波可引起系统的电感、电容发生谐振,使谐波放大。当谐波引起系统谐振时,谐波电压升高,谐波电流增大,引起继电保护及自动装置误动,损坏系统设备(如电力电容器、电缆、电动机等),引发系统事故,威胁电力系统的安全运行。4、谐波可干扰通信设备,增加电力系统的功率损耗(如线损),使无功补偿设备不能正常运行等,给系统和用户带来危害。限制电网谐波的主要措施有:增加换流装置的脉动数;加装交流滤波器、有源电力滤波器;加强谐波管理。
电力谐波是在高压、中压还是低压环境都会产生,主要看你的 负荷性质,现在我国高压,中亚系统中都装了抑制谐波的装置,比如发电机用Y接线,变压器用YNd的接线或采用整流变的,这是电力系统最基本抑制谐波的方式,
2.无源滤波器安装在电力电子设备的交流侧,由L、R、C元件构成谐振回路,当谐振回路的谐振频率与某一谐波频率相同或相近时,即可阻止该频率的谐波进入电网。
有源滤波器是利用可控的功率半导体器件,向电网中输入与原有的谐波电流幅度相等相位相反的电流,使电网中的总谐波电流趋向于零,达到实时补偿谐波的目的。我 这样是有源滤波器与无源滤波器本质区别
3.无功、有功与谐波无关系,但谐波产生会使功率因数降低,是有功、无功损耗加大。谐波对无功功率的影响
(1)无功功率的增加,会导致电流增大和视在功率增加,从而使发电机、变压器及其他电气设备容量和导线容量增加。同时,电力用户的起动及控制设备、测量仪表的尺寸和规格也要加大。
(2)无功功率的增加,使总电流增大,因而使设备及线路的损耗增加,这是显而易见的。
(3)使线路及变压器的电压降增大,如果是冲击性无功功率负载,还会使电压产生剧烈波动,使供电质量严重降低。
谐波对系统的影响主要是使一些表计对测量的不准确,如果使谐波形成一个通路,会加大有功的损耗,或烧坏一些设备
4.有源滤波器的基本原理
有源滤波器是一种用于动态抑制谐波、补偿无功的电力电子装置,它能对大小和频率都变化的谐波,以及变化无功进行补偿。其应用可克服LC滤波器等传统的谐波抑制和无功补偿的缺点。
有源电力滤波器系统主要由两大部分组成,即指令电流检测电路和补偿电流发生电路。
指令电流检测电路的功能主要是从负载电流中分离出谐波电流分量和基波无功电流,然后将其反极性作用后发生补偿电流的指令信号。电流跟踪控制电路的功能是根据主电路产生的补偿电流,计算出主电路各开关器件的触发脉冲,此脉冲经驱动电路后作用于主电路。这样电源电流中只含有基波的有功分量,从而达到消除谐波与进行无功补偿的目的。根据同样的原理,电力有源滤波器还能对不对称三相电路的负序电流分量进行补偿。
有源电力滤波器的主电路一般由PWM逆变器构成。根据逆变器直流侧储能元件的不同,可分为电压型有源滤波器(储能元件为电容)和电流型有源滤波器(储能元件为电感)。电压型有源滤波器在工作时需对直流侧电容电压控制,使直流侧电压维持不变,因而逆变器交流侧输出为PWM电压波。而电流型有源滤波器在工作时需对直流侧电感电流进行控制,使直流侧电流维持不变,因而逆变器交流侧输出为PWM电流波。电压型有源滤波器的优点是损耗较少,效率高,是目前国内外绝大多数有源滤波器采用的主电路结构。电流型有源滤波器由于电流侧电感上始终有电流流过,该电流在电感内阻上将产生较大损耗,所以目前较少采用。
有源电力滤波器的分类
按电路拓朴结构分类,电力有源滤波器可分为并联型、串联型、串-并联型和混合型。
并联型有源滤波器的基本结构。它主要适用于电流源型非线性负载的谐波电流抵消、无功补偿以及平衡三相系统中的不平衡电流等。目前并联型有源滤波器在技术上已较成熟,它也是当前应用最为广泛的一种有源滤波器拓补结构。
串联型有源滤波器的基本结构。它通过一个匹配变压器将有源滤波器串联于电源和负载之间,以消除电压谐波,平衡或调整负载的端电压。与并联型有源滤波器相比,串联型有源滤波器损耗较大,且各种保护电路也较复杂,因此,很少研究单独使用的串联型有源滤波器,而大多数将它作为混合型有源滤波器的一部分予以研究。
混合型有源滤波器的基本结构。它是在串联型有源滤波器的基础上使用一些大容量的无源L-C滤波网络来承担消除低次谐波,进行无功补偿的任务。而串联型有源滤波器只承担消除高次谐振及阻尼无源LC网络与线路阻抗产生的谐波谐振的任务。从而使串联型有源滤波器的电流、电压额定值大大减少(功率容量可减少到负载容量的5%以下),降低了有源滤波器的成本和体积。从经济角度而言,这种结构形式在目前是一种值得推荐的方案。但随着电力电子器件性能的不断提高,成本不断下降,混合型有源滤波器可能被下面一种性能价格比更高的有源滤波器代替。
串-并联型有源滤波器的基本结构。它组合了串联有源滤波器和并联有源滤波器的优点,能解决电气系统发生的大多数电能质量问题,所以又称之为万能有源滤波器或统一电能质量调节器(UPQC),该类有源滤波器的主要问题是控制复杂、造价较高
1.电力谐波在高压\中压\低压都会产生,只要电路中存在非线性负载,就都会产生谐波。
电网谐波来自于3个方面:
一是发电源质量不高产生谐波:
发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。
二是输配电系统产生谐波:
输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。它的大小与磁路的结构形式、铁心的饱和程度有关。铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流0.5%。
三是用电设备产生的谐波:
晶闸管整流设备。由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。
变频装置。变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成份很复杂,除含有整数次谐波外,还含有分数次谐波,这类装置的功率一般较大,随着变频调速的发展,对电网造成的谐波也越来越多。
电弧炉、电石炉。由于加热原料时电炉的三相电极很难同时接触到高低不平的炉料,使得燃烧不稳定,引起三相负荷不平衡,产生谐波电流,经变压器的三角形连接线圈而注入电网。其中主要是2 7次的谐波,平均可达基波的8% 20%,最大可达45%。
气体放电类电光源。荧光灯、高压汞灯、高压钠灯与金属卤化物灯等属于气体放电类电光源。分析与测量这类电光源的伏安特性,可知其非线性十分严重,有的还含有负的伏安特性,它们会给电网造成奇次谐波电流。
家用电器。电视机、录像机、计算机、调光灯具、调温炊具等,因具有调压整流装置,会产生较深的奇次谐波。在洗衣机、电风扇、空调器等有绕组的设备中,因不平衡电流的变化也能使波形改变。这些家用电器虽然功率较小,但数量巨大,也是谐波的主要来源之一。
2.有源滤波器与无源滤波器的区别:有源滤波器是指用晶体管或运放构成的包含放大和反馈的滤波器,能够检测电网中谐波电流分量,产生出与之相反的电流分量,从而抵消掉谐波。是一种动态谐波抑制,目前有源滤波器能滤到50次谐波。 无源滤波器是指用电阻/电感/电容等无源元件构成的滤波器,只能针对3,5,7,9等几次谐波。
3.无功,有功,谐波关系:
很多公式,打上来很麻烦,功率立方体,电流立方体。我这里有个PPT.
4.有源滤波器检测谐波电流了。
5.不是很清楚。
我给你答点关键的吧,有了基础剩下就靠你的理解和发挥了。如果对你有帮助就把分给我吧,也鼓励我一下。
1.电力谐波是在高压、中压还是低压环境产生?
答:电力谐波源是变频或整流装置。谐波产生后在电网中不经治理是无法消除的。只要系统内有谐波不管在哪个电压环境中都能检测出来,只是国家标准规定的各级电压的畸变率允许值有不同(找谐波的国标看看)。
2.有源滤波器与无源滤波器的区别?
答:有源滤波器是电子的,无源滤波器是机械的。有源滤波器是检测到某一设定好的谐波次数后抵消它,无源滤波器是通过电抗器与电容器的配合形成某次谐波通道吸收谐波。有源滤波器造价是无源滤波器的3倍以上,技术相对不太成熟,且维护成本高;无源滤波器造价相对较低,技术较成熟,安装后基本免维护。有源滤波器用于小电流,无源滤波器可用于大电流。
3.无功、有功与谐波的关系。
答:采用无源滤波器因为有电容器的原因,所以可提高功率因素。采用有源滤波器只是消除谐波与功率因素无关。(这也可以算上一问的答案之一吧)
4.有源滤波器能检测什么样的电力谐波?
答:你设定什么就检测什么。
5.FIR.IIR模拟滤波器能检测什么样的电力谐波?如何检测?
答:这个没接触过,不敢胡说。呵呵,对不起了,你还是再查查资料吧。
随着大量电力电子装置在电网的投入运行,谐波已被公认为电力系统的“污染”和“公害”,谐波问题以及谐波的治理问题随着电力系统的发展愈来愈引起广泛的关注。目前谐波治理的方法主要有无源滤波技术和有源滤波技术两种。
无源滤波装置是目前应用最为广泛的谐波抑制手段,它是按照希望抑制的谐波次数专门量身制造的,采用电感、电容的调谐原理,将谐波陷落在滤波器中,以减少对电网的注入。无源滤波装置结构简单,成本较低,技术已比较成熟,但是也存在着难以克服的缺陷:
1、滤波特性受系统参数的影响较大,极易与系统或者其它滤波支路发生串并联谐振。
2、只能消除特定的几次谐波,而对其他的某次谐波则会产生放大作用
3、滤波、无功补偿、调压等要求之间有时难以协调
4、谐波电流增大时,滤波器负担随之加重,可能造成滤波器过载,甚至损坏设备。
5、有效材料消耗多,体积大
有源滤波技术作为一种新型的谐波治理技术,是消除谐波污染、提高电能质量的有效工具,与无源滤波技术相比,有着无可比拟的优势,主要表现在以下几个方面。
1、实现了动态补偿,可对频率和大小均变化的无功功率进行补偿,对补偿对象的变化有极快的响应速度;
2、有源滤波装置是一个高阻抗电流源,它的接入对系统阻抗不会产生影响,因此此类装置适合系列化,规模化生产;
3、当电网结构发生变化时装置受电网阻抗的影响不大,不存在与电网阻抗发生谐振的危险,同时能抑制串并联谐振
4、补偿无功功率时不需要储能元件,补偿谐波时所需要的储能元件不大
5、用同一台装置可同时补偿多次谐波电流和非整数倍次的谐波电流,既可以对一个谐波和无功源进行单独补偿,也可对多个谐波和无功源进行集中补偿
6、当线路中的谐波电流突然增大时有源滤波器不会发生过载,并且能正常发挥作用,不需要与系统断开
7、装置可以仅输出所需要补偿的高次谐波电流,不输出基波无功功率,不但减小了有源滤波器的总容量,还可以避免轻负荷时发生无功倒送现象。
目前国内生产有源滤波装置的企业较少,而且滤波性能也不甚理想,潍坊力捷能源科技有限公司携手专业院校研制推出的并联有源电力滤波装置LJ-380V/100A使用高性能控制芯片和全控型电力电子器件,采用最先进的控制理论和全数字控制方法,实时检测电网中负载电流,快速分离出谐波电流分量,并根据谐波电流的大小产生控制指令,实时将大小相等、方向相反的补偿电流注入到电网中,实现瞬时滤除谐波。同时还可以提供超前或滞后的无功电流,用于改善电网的功率因数和实现动态无功补偿,提高了电能质量。LJ-380V/100A并联有源电力滤波装置已在多家企业试验运行,效果良好,达到了国家规定的谐波畸变的限制值。