x/(y+z)+y/(x+z)+z/(x+y)>=3/2 设S=x+y+z x/(y+z)+y/(x+z)+z/(x+y) =S/(y+z)+S/(x+z)+S/(x+y)-3 >=9/[(y+z)/S+(x+z)/S+(y+x)/S]-3 =9/2-3 =3/2 以上不等号是用算术平均>=调和平均,即:a+b+c/3>=3/(1/a+1/b+1/c) 变一下就是a+b+c>=9/(1/a+1/b+1/c)