算术平均数、中位数、众数三者之间的关系:
1、众数、中位数和平均数是集中趋势的三个主要测度值,只是它们具有不同的特点和应用场合。
2、对于具有单峰分布的大多数数据而言,众数、中位数和平均数之间具有以下数量关系:
1)如果数据的分布时对称的,中位数、算术平均数、众数三者完全相等。
2)如果数据是左偏分布,说明数据存在极小值,必然拉动平均数向极小值一方偏移,而众数和中位数由于是位置代表值,不受极值的影响,因此三者之间的关系表现为:平均数<中位数<众数。
3)如果数据是右偏分布,说明数据存在极大值,必然拉动平均数向极大值一方偏移,则众数<中位数<平均数。
算术平均数( arithmetic mean):
又称均值,是统计学中最基本、最常用的一种平均指标,分为简单算术平均数、加权算术平均数。它主要适用于数值型数据,不适用于品质数据。根据表现形式的不同,算术平均数有不同的计算形式和计算公式。
算术平均数是加权平均数的一种特殊形式(特殊在各项的权重相等)。在实际问题中,当各项权重不相等时,计算平均数时就要采用加权平均数;当各项权相等时,计算平均数就要采用算术平均数。
众数(Mode):
是统计学名词,在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个)。 修正定义:是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个。用M表示。 理性理解:简单的说,就是一组数据中占比例最多的那个数。
中位数(又称中值,英语:Median):
统计学中的专有名词,代表一个样本、种群或概率分布中的一个数值,其可将数值集合划分为相等的上下两部分。对于有限的数集,可以通过把所有观察值高低排序后找出正中间的一个作为中位数。如果观察值有偶数个,通常取最中间的两个数值的平均数作为中位数。