先说一下,振荡间断点是第二类间断点。第一类间断点的共同点是左右极限都存在,若左右极限相等但不等于函数值为可去间断点,若左右极限不等为跳跃间断点。振荡间断点是左右极限至少一个不存在且函数值反复震荡
如果 x0 是函数 f(x) 的间断点,且左极限及右极限都存在,则称 x0 为函数 f(x) 的第一类间断点(discontinuity point of the first kind)。
对于不定积分来说,连续函数必有原函数,且原函数连续.如果分段函数的分界点是函数的第一类间断点,则包含该点在内的区间不存在原函数.但是对于定积分来说,在[a,b]上的连续函数和只有有限个第一类间断点的函数都是可积函数.