∵ α,θ∈(0,π/2)∴ tanθ>0,得sinα>cosαtanθ=(sin α-cos α)/(sin α+cos α)cotθ=(sin α+cos α)/(sin α-cos α)cot²θ=(1+2sinαcosα)/(1-2sinαcosα)=(1+sin2α)/(1-sin2α)1+cot²θ=2/(1-sin2α)sin²θ=(1-sin2α)/2sin²θ=(sinα-cosα)²/2则 sinα-cosα=√2sinθ