怎样求正切函数的导数

2025-02-06 13:13:10
推荐回答(3个)
回答1:

(tan x )'=(sin x /cos x)'

=[(sin x)'cos x-sin x(cos x)']/cosx*cos x

=[cos x*cos x-(-sin x*sin x)]/cos x*cos x

=1/cos x*cos x

=sec x*sec x

扩展资料:

三角函数求导公式:

(sinx)' = cosx

(cosx)' = - sinx

(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2

-(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2

(secx)'=tanx·secx

(cscx)'=-cotx·cscx

(arcsinx)'=1/(1-x^2)^1/2

(arccosx)'=-1/(1-x^2)^1/2

(arctanx)'=1/(1+x^2)

(arccotx)'=-1/(1+x^2)

(arcsecx)'=1/(|x|(x^2-1)^1/2)

(arccscx)'=-1/(|x|(x^2-1)^1/2)

回答2:

(Tan x )'= 1/cos x 的平方,也就是Sec x的平方你可以把Tan x 定成sin x /cos x 的形式,再用导数商的求导法则求,过程如下:
(tan x )'=(sin x /cos x)'
=[(sin x)'cos x-sin x(cos x)']/cosx*cos x
=[cos x*cos x-(-sin x*sin x)]/cos x*cos x
=1/cos x*cos x
=sec x*sec x

回答3:

(tan
x
)'=(sin
x
/cos
x)'
=[(sin
x)'cos
x-sin
x(cos
x)']/cosx*cos
x
=[cos
x*cos
x-(-sin
x*sin
x)]/cos
x*cos
x
=1/cos
x*cos
x
=1/cos^2x.