y=x^2+3x-2,求函数在x=2处的导函数值
解:f’(2)=lim(x/y)=[limf'(2+x)-f(2)]/x
x_0 x_0
f(2+x)= 2+x)^2+3(2+x)-2=x^2+7x+8
f(2)=8
所以f(2+x)-f(2)=x^2+7x
所以f’(2)=limx/y=[limf'(2+x)-f(2)]/x=lim(x^2+7x)/x=lim(x+7)=7
x_0 x_0 x_0 x_0