已知函数f(x)=|x-1|.(1)解不等式f(x)+f(x+4)≥8;(2)若|a|<1,|b|<1,且a≠0,求证:f(ab

2024-12-26 11:34:14
推荐回答(1个)
回答1:

(Ⅰ)f(x)+f(x+4)=|x-1|+|x+3|=

?2x?2, x<?3
4, ?3≤x≤1 
2x+2, x>1

当x<-3时,由-2x-2≥8,解得x≤-5;
当-3≤x≤1时,f(x)≤8不成立;
当x>1时,由2x+2≥8,解得x≥3.
所以,不等式f(x)≤4的解集为{x|x≤-5,或x≥3}.
(Ⅱ)f(ab)>|a|f(
b
a
),即|ab-1|>|a-b|.
因为|a|<1,|b|<1,
所以|ab-1|2-|a-b|2=(a2b2-2ab+1)-(a2-2ab+b2)=(a2-1)(b2-1)>0,
所以|ab-1|>|a-b|,故所证不等式成立.