推理的方法

2024-11-25 09:31:18
推荐回答(3个)
回答1:

由一个或几个已知的判断(前提),推导出一个未知的结论的思维过程。其作用是从已知的知识得到未知的知识,特别是可以得到不可能通过感觉经验掌握的未知知识。推理主要有演绎推理和归纳推理。演绎推理是从一般规律出发,运用逻辑证明或数学运算,得出特殊事实应遵循的规律,即从一般到特殊。

需要注意的是:如果不能考察某类事物的全部对象,而只根据部分对象作出的推理,不一定完全可靠。

推理是形式逻辑是研究人们思维形式及其规律和一些简单的逻辑方法的科学。

思维形式是人们进行思维活动时对特定对象进行反映的基本方式,即概念、判断、推理。思维的基本规律是指思维形式自身的各个组成部分的相互关系的规律,即用概念组成判断,用判断组成推理的规律。它有4条:即同一律、矛盾律、排中律和充足理由律。简单的逻辑方法是指,在认识事物的简单性质和关系的过程中,运用思维形式有关的一些逻辑方法,通过这些方法去形成明确的概念,作出恰当的判断和进行合乎逻辑的推理。

学习形式逻辑知识,可以指导我们正确进行思维,准确、有条理地表达思想;可以帮助我们运用语言,提高听、说、读、写的能力;可以用来检查和发现逻辑错误,辨别是非。同时,学习形式逻辑还有利于掌握各科知识,有助于将来从事各项工作。

一、推理及其语言形式

推理是由一个或几个已知的判断推出一个新的判断的思维形式。例如“客观规律总是不以人们的意志为转移的,经济规律是客观规律,所以,经济规律是不以人们的意志为转移的”,这段话就是一个推理。其中“客观规律总是不以人们的意志为转移的”,“经济规律是客观规律”是两个已知的判断,从这两个判断推出“经济规律是不以人们的意志为转移的”这样一个新的判断。任何一个推理却包含已知判断、新的判断和一定的推理形式。作为推理的已知判断叫前提,根据前提推出新的判断叫结论。前提与结论的关系是理由与推断,原因与结果的关系。

推理与概念、判断一样,同语言密切联系在一起,推理的语言形式为表示因果关系的复句或具有因果关系的句群。

常用“因为……所为……”“由于……因而……”“因此”、“由此可见”、“之所以……是因为……”等作为推理的系词。

二、推理的种类

推理按推理过程的思维方向划分,主要有演绎推理、归纳推理和类比推理。

1.演绎推理

它是由普遍性的前提推出特殊性结论和推理。

演绎推理有三段论、假言推理和选言推理等形式。

2.归纳推理

它是由特殊的前提推出普遍性结论的推理。

归纳推理有以下几种类型:

3.类比推理

它是从特殊性前提推出特殊性结论的一种推理,也就是从一个对象的属性推出另一对象也可能具有这属性。

三、推理的几种具体方法

a. 三段演绎法:-由一个共同概念联系着的两个性质判断作前提,推出另一个性质判断作结论的推理方法。

b. 联言分解法:-由联言判断的真,推出一个肢判断真的联言推理形式的一种思维推理方法。

c. 连锁推导法:-在一个证明过程中,或一个比较复杂的推理过程中,将前一个推理的结论作为后一个推理的前提,一步接一步地推导,直到把需要的结论推出来。

d. 综合归纳法:-以大量个别知识为前提概括出一个一般性结论的推理方法。

e. 归谬反驳法:- 从一个命题的荒谬结论,论证其不能成立的思维方法。

回答2:

三段论是最基本的推理方法,在法律、数学证明等方面都常用。

1.三段论及其结构

三段论是由两个含有一个共同项的性质判断作前提得出一个新的性质判断为结论的演绎推理。例如:

知识分子都是应该受到尊重的,

人民教师都是知识分子,

所以,人民教师都是应该受到尊重的。

其中,结论中的主项叫做小项,用“S”表示,如上例中的“人民教师”;

结论中的谓项叫做大项,用“P”表示,如上例中的“应该受到尊重”;

两个前提中共有的项叫做中项,用“M”表示,如上例中的“知识分子”。

在三段论中,含有大项的前提叫大前提,如上例中的“知识分子都是应该受到尊重的”;含有小项的前提叫小前提,如上例中的“人民教师是知识分子”。

三段论推理是根据两个前提所表明的中项M与大项P和小项S之间的关系,通过中项M的媒介作用,从而推导出确定小项S与大项P之间关系的结论。

2、三段论的一般规则

三段论及其结构

三段论是由两个含有一个共同项的性质判断作前提得出一个新的性质判断为结论的演绎推理。例如:

知识分子都是应该受到尊重的,

人民教师都是知识分子,

所以,人民教师都是应该受到尊重的。

其中,结论中的主项叫做小项,用“S”表示,如上例中的“人民教师”;

结论中的谓项叫做大项,用“P”表示,如上例中的“应该受到尊重”;

两个前提中共有的项叫做中项,用“M”表示,如上例中的“知识分子”。

在三段论中,含有大项的前提叫大前提,如上例中的“知识分子都是应该受到尊重的”;含有小项的前提叫小前提,如上例中的“人民教师是知识分子”。

三段论推理是根据两个前提所表明的中项M与大项P和小项S之间的关系,通过中项M的媒介作用,从而推导出确定小项S与大项P之间关系的结论。

(二)三段论的一般规则

1.在一个三段论中,必须有而且只能有三个不同的概念。

为此,就必须使三段论中的三个概念,在其分别重复出现的两次中,所指的是同一个对象,具有同一的外延。违反这条规则就会犯四概念的错误。所谓四概念的错误就是指在一个三段论中出现了四个不同的概念。四概念的错误又往往是由于作为中项的概念未保持同一而引起的。比如:

我国的大学是分布于全国各地的;

清华大学是我国的大学;

所以,清华大学是分布于全国各地的。

这个三段论的结论显然是错误的,但其两个前提都是真的。为什么会由两个真的前提推出一个假的结论来了呢?原因就在中项(“我国的大学”)未保持同一,出现了四概念的错误。即“我国的大学”这个语词在两个前提中所表示的概念是不同的。在大前提中它是表示我国的大学总体,表示的是一个集合概念。而在小前提中,它可以分别指我国大学中的某一所大学,表示的不是集合概念,而是一个一般的普遍概念。因此,它在两次重复出现时,实际上表示着两个不同的概念。这样,以其作为中项,也就无法将大项和小项必然地联系起来,从而推出正确的结论。

2.中项在前提中至少必须周延一次。

如果中项在前提中一次也没有被断定过它的全部外延(即周延),那就意味着在前提中大项与小项都分别只与中项的一部分外延发生联系,这样,就不能通过中项的媒介作用,使大项与小项发生必然的确定的联系,因而也就无法在推理时得出确定的结论。例如,有这样的一个三段论:

一切金属都是可塑的,

塑料是可塑的,

所以,塑料是金属。

在这个三段论中,中项的“可塑的”在两个前提中一次也没有周延(在两个前提中,都只断定了“金属”、“塑料”是“可塑的”的一部分对象),因而“塑料””和“金属”究竟处于何种关系就无法确定,也就无法得出必然的确定结论,所以这个推理是错误的。

如果违反这条规则,就要犯“中项不周延”的错误,这样的推理就是不合逻辑的。

3.大项或小项如果在前提中不周延,那么在结论中也不得周延。

比如:

运动员需要努力锻炼身体;

我不是运动员;

所以,我不需要努力锻炼身体。

这个推理的结论显然是错误的。这个推理从逻辑上说错在哪里呢?主要错在“需要努力锻炼身体”这个大项在大前提中是不周延的(即“运动员”只是“需要努力锻炼身体”中的一部分人,而不是其全部),而在结论中却周延了(成了否定命题的谓项)。这就是说,它的结论所断定的对象范围超出了前提所断定的对象范围,因而在这一推理中,结论就不是由其前提所能推出的。其前提的真也就不能保证结论的真。这种错误逻辑上称为“大项不当扩大”的错误(如果小项扩大则称“小项不当扩大”的错误)。

4.两个否定前提不能推出结论;前提之一是否定的,结论也应当是否定的;结论是否定的,前提之一必须是否定的。

如果在前提中两个前提都是否定命题,那就表明,大、小项在前提中都分别与中项互相排斥,在这种情况下,大项与小项通过中项就不能形成确定的关系,因而也就不能通过中项的媒介作用而确定地联系起来,当然也就无法得出必然确定的结论,即不能推出结论了。比如:

一切有神论者都不是唯物主义者;

某某人不是有神论者;

所以,?

那么,为什么前提之一是否定的,结论必然是否定的?这是因为,如果前提中有一个是否定命题,另一个则必然是肯定命题(否则,两个否定命题不能得出必然结论),这样,中项在前提中就必然与一个项是否定关系,与另一个项是肯定关系。这样,大项和小项通过中项联系起来的关系自然也就只能是一种否定关系,因而结论必然是否定的了。例如:

一切有神论者都不是唯物主义者;

某人是有神论者;

所以,某人不是唯物主义者。

为什么结论是否定的,前提之一必定是否定的呢?因为如果结论是否定的,那一定是由于前提中的大、小项有一个和中项结合,而另一个和中项排斥。这样,大项或小项同中项相排斥的那个前提就是否定的,所以结论是否定的则前提之一必定是否定的。

5.两个特称前提不能得出结论;前提之一是特称的,结论必然是特称的。

例如:

有的同学是运动员;

有的运动员是影星;

所以,?

由这两个特称前提,我们无法必然推出确定的结论。因为,在这个推理中的中项(“运动员”)一次也未能周延。又如:

有的同学不是运动员;

有的运动员是影星;

所以,?

这里,虽然中项有一次周延了,但仍无法得出必然结论。因为,在这两个前提中有一个是否定命题,按前面的规则,如果推出结论,则只能是否定命题;而如果是否定命题,则大项“影星”在结论中必然周延,但它在前提中是不周延的,所以必然又犯大项扩大的错误。

因此两个特称前提是无法得出必然结论的。那么,为什么前提之一是特称的,结论必然是特称的呢?例如:

所有大学生都是青年;

有的运动员是大学生;

所以,有的运动员是青年。

这个例子说明,当前提中有一个判断是特称命题时,其结论必然是特殊命题;否则,如果结论是全称命题就必然会违反三段论的另几条规则(如出现大、小项不当扩大的错误等)。

摘自复旦大学出版社《硕士专业学位研究生入学资格考试GCT新奇迹应试教程》(周建武编著)

回答3:

呵呵,简单说就是熟练书本上讲的理论,与题目联系起来,应用因果关系得出问题的答案