对 (6x-1)(2x-1)(3x-1)(x-1)+x^2 进行因式分解.

2024-12-29 04:52:26
推荐回答(2个)
回答1:

(6x-1)(2x-1)(3x-1)(x-1)+x^2
=(6x-1)(x-1)(2x-1)(3x-1)+x^2
=(6x^2+1-7x)(6x^2+1-5x)+x^2
=(6x^2+1)^2-12(6x^2+1)x+35x^2+x^2
=(6x^2+1)^2-12(6x^2+1)x+36x^2
=[(6x^2+1)-6x]^2
=(6x^2-6x+1)^2

回答2:

原式=1/36(6x-1)(6x-2)(x-3)(6x-6)+x^2
=1/36[(36x^2-18x+6)(36x^2-30x+6)+36x^2]
设(36x^2-18x+6)=a
原式=1/36[a(a-12x)+36x^2]
=1/36(a^2-12ax+36x^2)
=1/36(a-6x)^2
=1/36(36x^2-24x+6)^2
=(6x^2-4x+1)^2