当变量无限接近于某值A时,函数值也会无限接近于一个定值f(A),这个定值f(A)称为函数的极限值,为了具体求出函数的这个极限值, 就须将变量无限接近的那个值A实际代入函数f(x),从而求出函数的具体极限值。这里的极限值f(A)实际上就是表示函数无限接近的值,严格说来不是真正意义上的等于,只是无限趋近(这就是极限的定义,1加上一个趋近于2的值的极限等于3,这和1+2等于3是不同的概念)。比如 y=1/x, 当x趋近于0时,y=∞, 在这里因为x只是无限接近于0而并不能等于0,所以y也不是真正的等于无穷大而只是无限接近。 理解了这个概念,就能理解“看做等于”了。
不准确,可以递增着接近,也可以递减着接近,还可以不单调地接近
7.8,7.9,7.89,7.999。这四个点如果在邻域内都无限逼近8,那就说明极限是吧,这些点所在的函数在邻域内并不一定单调