a=0时,0^0的无意义,0的负数次方无意义
a<0时,a的某些次方无意义,例如(-4)^(3/2)无意义
a=1时,1^x=1恒成立,无研究的必要。
如果a为负数,那么函数就不再是连续的曲线,而是一个个散点,因此在高中阶段不作研究。
如果a=1,那么函数就是y=1,没有了研究的意义。
所以研究指数函数的时候,a一定是大于0且不等于1的。
解
y=a^x(a>0且a≠1) ,x∈R的函数为指数函数
当a=1时,无论x如何改变,y的值始终是1
当a=0时,0的负数次方无意义
当a<0时,函数随整数x的奇偶变化,会出现许多间断,对函数性质的掌握,意义不大
随分数x的分母奇偶变化,对函数存在意义的影响也会较大
所以a=1与a<0的情况,总结就是,意义不大