如何判断一个二元函数在某点可微?(我知道是偏导数连续,但做题不是用这种方法,好像是一个极限等于零)

2024-12-31 01:12:20
推荐回答(2个)
回答1:

应该是该点处函数值的增量-在x方向偏导数乘以x的增量-在y方向偏导数乘以y的增量,在x,y两方向增量均趋近于0时,极限是(x^2+y^2)^1/2的高阶无穷小(即二者比值为0)

回答2:

判定二元函数的可微性,关键要理解二元函数连续、偏导数存在、方向导数存在、偏导数存在且连续这四个概念与可微之间的关系。本文着重分析这四种关系,给出判定二元函数在某点可微的方法。关键词: 二元函数 连续 偏导数 可微 方向导数对于一元函数,可微性比较容易判定。因为一元函数在某个点连续、可导、可微这三个概念的关系是很清楚的,可简单地表示为:可微?圳可导?圯连续。(剩余2973字)