123的平方-124×122
=123的平方-(123+1)×(123-1)
=123^2-123^2+1
=1
(2-1)×(2+1)×(2的平方+1)×(2的4次方+1)...(2的32次方+1)+1
=(2^2-1)(2的平方+1)×(2的4次方+1)...(2的32次方+1)+1
=(2^4-1)(2的4次方+1)...(2的32次方+1)+1
=(2^32-1)(2^32+1)+1
=2^64
123的平方-124×122
=123^2-(123^2-1)
=1
(2-1)×(2+1)×(2的平方+1)×(2的4次方+1)...(2的32次方+1)+1
=(2^2-1) )×(2的平方+1)×(2的4次方+1)...(2的32次方+1)+1
=...
=2^64-1+1
=2^64
123^2-122*124=123^2-(123-1)(123+1)=123^2-123^2+1=1
(2-1)(2+1)(2^2+1)(2^4+1)……(2^32+1)+1
=(2^2-1)(2^2+1)(2^4+1)……(2^32+1)+1
=(2^32-1)(2^32+1)+1
=2^64-1+1
=2^64
123的平方-124×122
=123^2-(123+1)(123-1)
=123^2-(123^2-1)
=123^2-123^2+1
=1
(2-1)(2+1)(2的平方+1)(2的4次方+1)+.......+(2的32次方+1)+1
=(2^2-1)(2^2+1)....(2^32+1)+1
=...
=(2^32-1)(2^32+1)+1
=2^64-1+1
=2^64
123^2-(123+1)*(123-1)=123^2-123^2+1=1