解决牛吃草问题常用到四个基本公式,分别是︰
(1)草的生长速度= (对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);
(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;
(3)吃的天数=原有草量÷(牛头数-草的生长速度);
(4)牛头数=原有草量÷吃的天数+草的生长速度。
这四个公式是解决牛顿问题的基础。由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。
牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。正是由于这个不变量,才能够导出上面的四个基本公式。
扩展资料:
牛吃草问题实例:
天气渐渐变冷,牧场上的草不仅不增长反而以固定的速度减少。已知牧场上有一片草地,草地上的草可供给20头牛吃5天,15头牛吃6天,照这样计算可供给多少头牛吃10天?
分析:设一头牛一天吃的草为1份。原有草量是固定的。在牛吃草的过程中,由于天气变冷,草每天都均匀的减少。
草每天减少的量是固定的。那么原有草量-5天草的减少的量=20头牛吃5天的草量=20×5=100份。原有草量-6天草的减少量=15头牛吃6天的草量=15×6=90份。那么(100-90)÷(6天草的减少量-5天草的减少的量)就是草每天的减少量。
每天草的减少量:(100-90)÷(6-5)=10份。
原有草量:20×5+10×5=150(份)或者15×6+10×6=150(份)
牧场10天实际消耗的原有草量:10×10=100(份)
10天可供多少头牛吃:(150-100)÷10=5(头)
参考资料来源:百度百科-牛顿问题(牛吃草问题)
(1)草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数);
(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`
(3)吃的天数=原有草量÷(牛头数-草的生长速度);
(4)牛头数=原有草量÷吃的天数+草的生长速度。
小心被骗
解决牛吃草问题常用到四个基本公式,分别是︰
(1)草的生长速度= (对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);
(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;
(3)吃的天数=原有草量÷(牛头数-草的生长速度);
(4)牛头数=原有草量÷吃的天数+草的生长速度。
这四个公式是解决牛顿问题的基础。由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。
牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。正是由于这个不变量,才能够导出上面的四个基本公式。
扩展资料:
牛吃草问题实例:
天气渐渐变冷,牧场上的草不仅不增长反而以固定的速度减少。已知牧场上有一片草地,草地上的草可供给20头牛吃5天,15头牛吃6天,照这样计算可供给多少头牛吃10天?
分析:设一头牛一天吃的草为1份。原有草量是固定的。在牛吃草的过程中,由于天气变冷,草每天都均匀的减少。
草每天减少的量是固定的。那么原有草量-5天草的减少的量=20头牛吃5天的草量=20×5=100份。原有草量-6天草的减少量=15头牛吃6天的草量=15×6=90份。那么(100-90)÷(6天草的减少量-5天草的减少的量)就是草每天的减少量。
每天草的减少量:(100-90)÷(6-5)=10份。
原有草量:20×5+10×5=150(份)或者15×6+10×6=150(份)
牧场10天实际消耗的原有草量:10×10=100(份)
10天可供多少头牛吃:(150-100)÷10=5(头)
参考资料来源:百度百科-牛顿问题(牛吃草问题)
推荐于 今天 15:45
查看全部32个回答
牛饲料多少钱一只_肉牛养殖_免费送货上门
关注饲料的都在看
牛饲料找英美尔,多种型号,种类丰富,绿色环保的饲料产品!成都英美尔农牧科技产品种类丰富可以满足所有客户的养殖饲料需求,产品可覆盖全国!
cdyme.cn广告
养牛饲料英美尔牛料,厂家直销,免运费
养牛饲料英美尔牛料,质优价廉,厂家平价销售,一件起发,免费托运。养牛饲料性价比高,免费提供养殖书籍及技术服务,养殖户们都在选!
bjyme.com广告
牛吃草问题常用到四个基本公式:
牛吃草问题又称为消长问题,是17世纪英国伟大的科学家牛顿提出来的。典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。由于吃的天数不同,草又是天天在生长的,所以草的存量随吃的天数不断地变化。解决牛吃草问题常用到四个基本公式,分别是︰
(1)草的生长速度= 对应的牛头数吃的较多天数-相应的牛头数吃的较少天数(吃的较多天数-吃的较少天数);
(2)原有草量=牛头数吃的天数-草的生长速度吃的天数;`
(3)吃的天数=原有草量(牛头数-草的生长速度);
(4)牛头数=原有草量吃的天数+草的生长速度。
这四个公式是解决消长问题的基础。
由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。正是由于这个不变量,才能够导出上面的四个基本公式。
解决牛吃草问题常用到四个基本公式,分别是∶
(1)草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数);
(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`
(3)吃的天数=原有草量÷(牛头数-草的生长速度);
(4)牛头数=原有草量÷吃的天数+草的生长速度。
这四个公式是解决消长问题的基础。解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。
这类问题的基本数量关系是:
1.(牛的头数×吃草较多的天数-牛头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草的量。
2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草。