沉积岩的颜色、物质成分和结构

2024-11-22 06:47:15
推荐回答(1个)
回答1:

(一)沉积岩的颜色

颜色是沉积岩的重要宏观特征之一,对沉积岩的成因具有重要的指示性意义。

1.颜色的成因类型

因为决定岩石颜色的主要因素是它的物质成分,所以沉积岩的颜色也可按主要致色成分划分成两大成因类型,即继承色和自生色。

◎继承色:主要由陆源碎屑矿物显现出来的颜色称为继承色,是某种颜色的碎屑较为富集的反映,只出现在陆源碎屑岩中,如较纯净石英砂岩的灰白色,含大量钾长石的长石砂岩的浅肉红色,含大量隐晶质岩屑的岩屑砂岩的暗灰色,等等。

◎自生色:主要由自生矿物(包括有机质)表现出来的颜色称为自生色,可出现在任何沉积岩中。按致色自生成分的成因,自生色可分为原生色和次生色两类。(1)原生色是由原生矿物或有机质显现的颜色,通常分布比较均匀稳定,如海绿石石英砂岩的绿色、炭质页岩的黑色等。(2)次生色是由次生矿物显现的颜色,常常呈斑块状、脉状或其他不规则状分布,如海绿石石英砂岩顺裂隙氧化、部分海绿石变成褐铁矿而呈现的暗褐色,等等。无论是原生色还是次生色,其致色成分的含量并不一定很高,只是致色效果较强罢了。原生色常常是在沉积环境中或在较浅埋藏条件下形成的,对当时的环境条件具有直接的指示性意义。次生色则除特殊情况外,多是在沉积物固结以后才出现的,只与固结以后的条件有关。

2.几种典型自生色的致色成分及其成因意义

◎白色或浅灰白色:当岩石不含有机质、构成矿物(不论其成因)基本上都是无色透明时常为这种颜色,如纯净的高岭石、蒙脱石粘土岩、钙质石英砂岩、结晶灰岩等。

◎红、紫红、褐或黄色:当岩石含高铁氧化物或氢氧化物时可表现出这种颜色,其含量低至百分之几即有很强的致色效果,通常高铁氧化物为主时偏红或紫红,高铁氢氧化物为主时偏黄或褐黄。由于自生矿物中的高铁氧化物或氢氧化物只能通过氧化才能生成,故这种颜色又称氧化色(oxidized color)。氧化色可准确地指示氧化条件(但并非一定是暴露条件)。陆源碎屑岩的氧化色多由高价铁质胶结物造成,泥质岩、灰岩、硅质岩的氧化色常由弥散状高铁微粒造成。由具有氧化色的砂岩、粉砂岩和泥质岩稳定共生形成的一套岩石称为红层或红色岩系,地球上已知最古老的红层产于中元古代,据此推测,地球富氧大气的形成不会晚于这个时期。

◎灰、深灰或黑色:这通常是因为岩石含有有机质或弥散状低铁硫化物(如黄铁矿、白铁矿)微粒的缘故,它们的含量愈高,岩石愈趋近黑色。有机质和低铁硫化物均可被氧化,故这种颜色只能形成或保存于还原条件,也因此而称为还原色(reduced color)。陆源碎屑岩、石灰岩、硅质岩等的还原色大多与有机质有关,泥质岩的还原色既与有机质,也与低铁硫化物有关。

◎绿色:一般由海绿石、绿泥石等矿物造成。这类矿物中的铁离子有Fe2+和Fe3+两种价态,可代表弱氧化或弱还原条件。砂岩的绿色常与海绿石颗粒或胶结物有关,泥质岩的绿色常是绿泥石造成的。此外,岩石中若含孔雀石也可显绿色,但相对少见。

除上述典型颜色以外,岩石还可呈现各种过渡性颜色,如灰黄色、黄绿色等,尤其在泥质岩中更是这样。泥质沉积物常含不等量的有机质,在成岩作用中,有机质会因降解而减少,高锰氧化物或氢氧化物(致灰黑成分)常呈泥级质点共存其间,一些有色的微细陆源碎屑也常混入,这是泥质岩常常具有过渡颜色的主要原因,而砂岩、粉砂岩、灰岩等的过渡色则主要取决于所含泥质的多少和这些泥质的颜色。

影响颜色的其他因素还有岩石的粒度和干湿度,但它们一般不会改变颜色的基本色调,只会影响颜色的深浅或亮暗。在其他条件相同情况下,岩石粒度愈细或愈潮湿,其色愈深愈暗。

(二)沉积岩的矿物成分和化学成分

沉积岩的固态物质包括有机质和矿物两大部分。除了煤这种可燃有机岩以外,一般沉积岩中的有机质主要赋存在泥质岩和部分碳酸盐岩中,其他岩石中的含量很少,常在1%以下,其中可溶于有机酸的部分是沥青,其余难溶于常用无机或有机溶剂的部分称为干酪根(kerogen),二者都是沉积有机质经沉积后降解的产物。沉积岩中的矿物比较复杂。由于原始物质中的碎屑物质可来自任何类型的母岩,所以岩浆岩和变质岩中的所有矿物都可在沉积岩中出现。迄今为止,在沉积岩中已经知道的矿物已达160种以上,但它们中的绝大多数都比较稀少或分散,只有20种左右是比较常见的,而且存在于同一岩石中的矿物最多不超过5~6种,有些仅1~3种。矿物成分在整个沉积岩中的多样性和在具体岩石中的简单性从一个侧面反映了沉积岩成因的独特性质。

从矿物的 “生成” 这个角度出发,沉积岩中的矿物可划分成两大成因类型:他生矿物和自生矿物。

◎他生矿物(allogenic mineral):是在所赋存沉积岩的形成过程开始之前就已经生成或已经存在的矿物。按来源,它可分成陆源碎屑矿物和火山碎屑矿物两类(宇宙尘埃矿物数量稀少,可以忽略)。陆源碎屑矿物是母岩以晶体碎屑或岩石碎屑(简称岩屑)形式提供给沉积岩的,可看成是沉积岩对母岩矿物的继承,故也称继承矿物(inherited mineral),例如来自花岗岩和花岗片麻岩等母岩的碎屑石英、碎屑长石、碎屑云母等。火山碎屑矿物是由火山爆发直接提供给沉积岩的,在成分上与来自岩浆岩母岩的矿物相同。

◎自生矿物(authigenic mineral):是在所赋存沉积岩的形成作用中以化学或生物化学方式新生成的矿物,或者简单说是由所赋存沉积岩自己生成的矿物。常见的典型自生矿物有粘土矿物、方解石、白云石、石英、玉髓、海绿石、石膏、铁锰氧化物或其水化物,其次是黄铁矿、菱铁矿、铝的氧化物或氢氧化物、长石等。此外鲕粒等自生颗粒及有机质也属于自生范畴。有些矿物(如石英、长石等)在他生矿物和自生矿物中都可出现,为避免混淆,在实践中应明确它的成因,如碎屑石英、自生石英或碎屑长石、自生长石等。按沉积岩形成作用的阶段性,自生矿物可分为风化矿物、沉积矿物和成岩矿物三类,它们分别在化学风化作用、化学或生物沉积作用和成岩作用中生成。另一种更为流行的划分方法是将自生矿物划分成原生矿物和次生矿物两类:如果自生矿物在它赋存的沉积物或沉积岩中占据空间时,该空间还未被别的矿物占据,这种矿物就是原生矿物;如果该空间正被别的矿物占据着,它是通过某种化学过程(如交代)才夺取到这个空间的,这种矿物就是次生矿物。按这样的定义,风化矿物、沉积矿物和在孔洞中沉淀的成岩矿物都是原生矿物,而交代原生矿物形成的矿物才是次生矿物。

沉积岩的化学成分取决于其矿物组成特征,随岩石类型的不同而相差极大(表13-1),一些石英砂岩或硅质岩可含90%以上的SiO2,而石灰岩则高度富CaO,其他Al2O3、Fe2O3和MgO等也明显富集在某些类型的岩石中,这显然是地球物质循环到表生带后因背景条件不同而发生分异的结果。

表13-1 某些沉积岩的化学成分(wB/%)

资料来源:(1)Bradbury,1962;(2)Yainamoto,1987;(3)范德廉,1981;(4)Clarke,1942;(5)Ham,1949;(6)James,1966。空白为未分析。

传统的沉积岩石学不太重视沉积岩化学成分研究,20世纪70年代以来,人们发现沉积岩化学成分与其形成的构造环境乃至物源区特点有密切关系,因而对沉积岩化学成分越来越重视。概括说来现代沉积岩岩石地球化学研究主要包括下列四个方面(参见Rollinson,1993):

(1)物源区(provenance)化学成分对沉积岩化学起着主要的控制作用,但沉积物离开物源区后的作用也有大的影响。物源区成分主要取决于大地构造环境。对沉积岩的主要元素研究表明,以前的风化条件有时可以从化学上得以识别,因此不同的风化条件可以反映在所形成的沉积物上。

(2)沉积物在搬运过程中也可以发生大的成分变化。例如有些微量元素会富集在粘土矿物组分或重矿物中。这些作用在大的程度上取决于从剥蚀到沉积所经历的时间间隔。

(3)沉积过程中发生的化学成分变化取决于沉积环境,而沉积环境是由沉降速率控制的。化学和生物化学作用控制了元素在海水中的溶解度,这些作用连同海底风化作用以及还原条件都对特定的沉积类型起重要作用。

(4)沉积后的作用可以用稳定同位素来研究。在成岩流体研究中,氢、氧同位素可以有效地示踪不同类型的水。在石灰岩成岩作用的研究中,则要用碳和氧同位素。利用氧同位素分异与温度的依赖关系,可以计算成岩过程中的地热梯度,从而恢复岩石的埋藏历史。

(三)沉积岩的结构

与岩浆岩和变质岩整体上都具有结晶的结构面貌不同,沉积岩虽然都是沉积成因,但却没有统一的沉积结构面貌,结构变化非常大。这主要是因为不同沉积物可以具有截然不同的沉积机理,沉积后还要继续经受成岩改造造成的。

由于沉积岩基本上可看成是固结的沉积物,在大多数情况下,沉积岩的整体结构基本上由沉积物决定,或者说,该整体结构在沉积作用中就已大致形成,只是在成岩作用中被封固在沉积岩中,只有少数结构是在成岩作用中形成的。沉积作用中形成的结构可称为沉积结构,归纳起来,沉积结构可分为5种基本类型(图13-1)。

◎碎屑结构(detrital texture):主要由砾、砂等较粗的陆源碎屑(或他生矿物颗粒)机械堆积形成。这些碎屑颗粒之间的物质称为填隙物(fillings),它们可以是与碎屑颗粒大致同时沉积,但相对却细小许多的机械沉积质点,如在粗大砾石之间的泥砂、在砂粒之间的泥等,这种填隙物称为基质(matrix),也可以是在沉积后作用中由孔隙水沉淀出来的矿物晶体,这种填隙物称为胶结物(cement)。当然填隙物有时并不会将碎屑颗粒之间的空间全部填满,这时就会出现一些孔隙(pore)。

图13-1 沉积岩整体结构的基本类型

◎泥状结构(muddy texture):主要由极细小(泥级)的固态质点机械堆积形成,这些质点通常不是单一成因,既可由母岩或其他物体机械破碎产生,也可以在风化或沉积作用中由化学或生物作用产生。沉积时,不同成因的质点常常会混杂在一起而同时参与结构的形成。当它们出现在碎屑结构中时就成了碎屑结构中的基质。

◎自生颗粒结构:常被简称为颗粒结构(granular texture),主要由一些特殊的颗粒,如生物碎屑、鲕粒等机械堆积形成,颗粒之间的填隙物也有基质和胶结物,在这些方面,它与碎屑结构极为相似,但结构中的颗粒却不同于陆源碎屑,它主要是由自生矿物构成的。

◎生物骨架结构(skeletal texture):主要由造礁生物原地生长繁殖形成,在生物骨架之间的空隙中常有自生颗粒,泥级质点或胶结物充填。此外,一些藻类(蓝藻、红藻等)其粘液可以粘结其他成分(灰泥、颗粒、生物碎屑等)形成粘结格架。

◎结晶结构(crystalline texture):也称化学结构,主要由原地化学沉淀的矿物晶体形成,所谓“原地” 是指晶体的大小、形态和相对位置都是在矿物沉淀时形成的。就结构面貌而言,结晶结构与岩浆岩或变质岩的某些结构很相似,但结构中的矿物却是从低温低压的水溶液中沉淀的,而且大多都是同一种矿物。它们显然都是自生矿物。这种结构可以在沉积时形成,也可在沉积以后由其他结构改造形成。

这5种沉积结构在具体表象或成因上还有许多变化,之间还有诸多过渡类型。这些将在以后章节中结合沉积作用再作详细介绍。关于成岩结构,将在成岩作用一章中专门介绍。