在△ABC中,角A,B,C,所对应的边分别为a,b,c,且满足cos2A-cos2B=2cos(6

2024-12-13 00:33:17
推荐回答(3个)
回答1:

右边积化和差得
cos2A-cos2B=2cos(π/6-A)cos(π/6+A)

cos2A-cos2B=2*1/2[cos(π/6-A+π/6+A)+cos(π/6-A-π/6-A)]
cos2A-cos2B=cosπ/3+cos2A
cos2B=-1/2
2B=2π/3
B=π/3
2)b=√3且b≤a

2=√3/√3/2=b/sinB=a/sinA=c/sinC=2R
a-(1/2*c)=2sinA-1/2*2sinC=2sinA-sinC
=2sinA-sin(2π/3-A)
=2sinA-√3/2cosA-1/2sinA
=3/2sinA-√3/2cosA
=√3(√3/2sinA-1/2cosA)
=√3sin(A-π/6)
0-π/6sin(A-π/6)的值域为:(-1/2,1)
√3sin(A-π/6)的值域为:(-√3/2,√3)
a-(1/2*c)取值范围(-√3/2,√3)

回答2:

1、∵2cos(π/6-A)cos(π/6+A)=2(√3/2*cosA+1/2*sinA)(√3/2*cosA-1/2*sinA)
=2(3/4cos²A-1/4*sin²A)=3/2cos²A-1/2*sin²A
∵cos2A-cos2B=1-2sin²A-(2cos²B-1)=2-2sin²A-2cos²B
∴3/2cos²A-1/2*sin²A=2-2sin²A-2cos²B
3/2cos²A+3/2*sin²A=2-2cos²B
3/2=2-2cos²B
2cos²B=1/2, cos²B=1/4
cosB=±1/2
所以B=120或B=60
2、∵b≦a, ∴B=60
b=2RsinB, 2R=b/sinB=√3/(√3/2)=2
a-1/2c=z, a=z+c/2
3=a²+c²-2accosB=a²+c²-ac=(z+c/2)²+c²-(z+c/2)c
z²+3c²/4=9
3c²/4=9-z²
A+C=120, C=120-A
60≦A, -A≦-60

回答3:

错的❌