圆锥曲线,是由一平面截二次锥面得到的曲线。圆锥曲线包括椭圆(圆为椭圆的特例)、抛物线、双曲线。起源于2000多年前的古希腊数学家最先开始研究圆锥曲线。
圆锥曲线(二次曲线)的(不完整)统一定义:到定点(焦点)的距离与到定直线(准线)的距离的商是常数e(离心率)的点的轨迹。
平面截圆锥曲线方法:
1、当平面与二次锥面的母线平行,且不过圆锥顶点,结果为抛物线。
2、当平面与二次锥面的母线平行,且过圆锥顶点,结果退化为一条直线。
3、当平面只与二次锥面一侧相交,且不过圆锥顶点,结果为椭圆。
4、当平面只与二次锥面一侧相交,且不过圆锥顶点,并与圆锥的对称轴垂直,结果为圆。
5、当平面只与二次锥面一侧相交,且过圆锥顶点,结果为一点。
6、当平面与二次锥面两侧都相交,且不过圆锥顶点,结果为双曲线(每一支为此二次锥面中的一个圆锥面与平面的交线)。
7、当平面与二次锥面两侧都相交,且过圆锥顶点,结果为两条相交直线。
光学性质
1、椭圆
从椭圆一个焦点发出的光,经过椭圆反射后,反射光线都汇聚到椭圆的另一个焦点上。
2、双曲线
从双曲线一个焦点发出的光,经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点上。
3、抛物线
从抛物线的焦点发出的光,经过抛物线反射后,反射光线都平行于抛物线的对称轴。
一束平行光垂直于抛物线的准线,向抛物线的开口射进来,经抛物线反射后,反射光线汇聚在抛物线的焦点。
参考资料来源:百度百科-圆锥曲线
圆锥曲线(英语:conic section),又称圆锥截痕、圆锥截面、二次曲线,是数学、几何学中通过平切圆锥(严格为一个正圆锥面和一个平面完整相切)得到的一些曲线,圆锥曲线在约前200年时就已被命名和研究了,其发现者为古希腊的数学家阿波罗尼阿斯(Apollonius of Perga,前262年~前190年),那时阿波罗尼阿斯对它们的性质已做了系统性的研究。
一个众知的圆锥曲线是椭圆。这出现在圆锥和平面的交截线是闭合曲线的时候。这时平面垂直于圆锥的轴线。如果平面平行于圆锥的母线(generator line),则圆锥曲线叫做抛物线。最后,如果交线是开曲线并且平面不平行于圆锥的母线,则圆锥曲线是双曲线。(在这个种情况平面将交截圆锥的两段,而生成两个分开的曲线,尽管经常忽略一个。)
圆锥曲线包括圆,椭圆,双曲线,抛物线,所以它们又叫圆锥曲线。
非圆二次曲线的统一定义是到定点的距离与到定直线的距离的比是常数e的点的轨迹。当e>1时为双曲线,当e=1时为抛物线,当0
圆锥曲线真正的定义是按照性质定义的:
A.椭圆
1、平面上到两点距离之和为定值的点的集合(该定值大于两点间距离,一般称为2a)(这两个定点也称为椭圆的焦点,焦点之间的距离叫做焦距);
2、平面上到定点距离与到定直线间距离之比为常数的点的集合(定点不在定直线上,该常数为小于1的正数)(该定点为椭圆的焦点,该直线称为椭圆的准线)。这两个定义是等价的
B.双曲线
1.数学上指一动点移动于一个平面上,与平面上两个定点F1,F2的距离的差的绝对值始终为一定值2a(2a小于F1和F2之间的距离)时所成的轨迹叫做双曲线(Hyperbola)。两个定点F1,F2叫做双曲线的焦点(focus)。两焦点的距离叫焦距,长度为2c。
2. 双曲线的第二定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数。定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。
C.抛物线
平面内,到一个定点F和一条定直线l距离相等的点的轨迹(或集合)称之为抛物线。另外,F称为"抛物线的焦点",l称为"抛物线的准线"。
截法:使圆锥的高垂直于地面,用一平面水平截取得一圆,稍微倾斜平面截取得一椭圆,使平面与母线平行截取得抛物线,使平面与高平行截取得双曲线一支,如果是对顶的圆锥则的完整的双曲线。
上面讲的都是错的 其实是这样的,你找两个完全一样的圆锥 让它们顶对顶的立起来 (看上去像个沙漏) 如果你拿一个和这个"沙漏"的轴线平行的平面去截这个沙漏 ,就会得到双曲线 拿一个和圆锥底面成一定角度的平面截这个"沙漏"就会得到椭圆或抛物线 这个原理就比较复杂了 ,总之叫圆锥曲线的原因是这些图形都是由平面与圆锥截得的!