不定积分 1⼀x^4√(1+x^2) dx

2024-12-16 15:03:37
推荐回答(2个)
回答1:

简单计算一下即可,答案如图所示

回答2:

这是个技巧比较高的积分,不是楼上答得那么简单的

x²/(1+x⁴)
dx
=(1/2)∫
(x²-1+x²+1)/(1+x⁴)
dx
=(1/2)∫
(x²-1)/(1+x⁴)
dx
+
(1/2)∫
(x²+1)/(1+x⁴)
dx
分子分母同除以x²
=(1/2)∫
(1-1/x²)/(x²+1/x²)
dx
+
(1/2)∫
(1+1/x²)/(x²+1/x²)
dx
分子放到微分之后,然后分母凑个2出来
=(1/2)∫
1/(x²+1/x²+2-2)
d(x+1/x)
+
(1/2)∫
1/(x²+1/x²-2+2)
d(x-1/x)
=(1/2)∫
1/[(x+1/x)²-2]
d(x+1/x)
+
(1/2)∫
1/[(x-1/x)²+2]
d(x-1/x)
=(√2/8)ln|(x+1/x-√2)/(x+1/x+√2)|
+
(√2/4)arctan[(x-1/x)/√2]
+
c
=(√2/8)ln|(x²+1-√2x)/(x²+1+√2x)|
+
(√2/4)arctan[(x-1/x)/√2]
+
c
【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”。