求微分方程通解,求详细过程

2024-11-24 02:01:23
推荐回答(4个)
回答1:

首先,把原式化简一下,等式两边先同时除以dx,再同时除以x,就可以得到:
y/x+(1+y/x)(dy/dx)=0的等式 (0),
设u=y/x(1),推出dy/dx=(xdu/dx)+u (2),
将(1)(2)同时带入(0)式:u+(1+u)(xdu/dx+u)=0
化简以后可以得到:x(1+u)du/dx =-u^2-2u
继续化简就是:
-(1+u)/u(u+2)du=dx /x
两边同时积分.
右边积分是ln x,
左边的-(1+u)/u(u+2)=-1/2*[(1/u)+1/(u+2)]
-1/2*[(1/u)+1/(u+2)]du=-1/2*[du/u+du/(u+2)]
左边积分后就是:-1/2*[ln u +ln(u+2)]
通解还要再加上一个常数C,
所以就是:-1/2*[ln u +ln(u+2)]=ln x+C
将u=y/x带入得到-1/2*[ln(y/x)+ln(y/x+2)]=lnx+c

回答2:


求微分方程通解,
求详细过程
具体解答如图所示

回答3:


微分方程求通解,其详细过程,见图。
此题可以化为关于x的一阶线性微分方程,可以直接代通解高数,得到微分方程的通解。
求微分方程通解,详细过程见上图。

回答4:

要用格林公式