一般情况下,f12不等于f21,但是若函数的二阶偏导数连续,则f12等于f21,条件是连续的二阶偏导数才可以。
函数有二阶连续偏导数,本身必连续,则满足 f12 = f21。二阶偏导数连续的时候f12等于f21。对于f(u,v)来讲,f是二元函数,二阶偏导数:f11(uu),f12(uv),f21(vu),f22(vv)。其中f12和f21相同。一般不会,具体看评分标准。
x方向的偏导
设有二元函数z=f(x,y),点(x0,y0)是其定义域D内一点。把y固定在y0而让x在x0有增量△x,相应地函数z=f(x,y)有增量(称为对x的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。
如果△z与△x之比当△x→0时的极限存在,那么此极限值称为函数z=f(x,y)在(x0,y0)处对x的偏导数,记作f'x(x0,y0)或函数z=f(x,y)在(x0,y0)处对x的偏导数,实际上就是把y固定在y0看成常数后,一元函数z=f(x,y0)在x0处的导数。
一般情况下,f12不等于f21,但是若函数的二阶偏导数连续,则f12等于f21,条件是连续的二阶偏导数才可以。
函数有二阶连续偏导数,本身必连续,则满足 f12 = f21。二阶偏导数连续的时候f12等于f21。对于f(u,v)来讲,f是二元函数,二阶偏导数:f11(uu),f12(uv),f21(vu),f22(vv)。其中f12和f21相同。一般不会,具体看评分标准。
x方向的偏导
设有二元函数z=f(x,y),点(x0,y0)是其定义域D内一点。把y固定在y0而让x在x0有增量△x,相应地函数z=f(x,y)有增量(称为对x的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。
如果△z与△x之比当△x→0时的极限存在,那么此极限值称为函数z=f(x,y)在(x0,y0)处对x的偏导数,记作f'x(x0,y0)或函数z=f(x,y)在(x0,y0)处对x的偏导数,实际上就是把y固定在y0看成常数后,一元函数z=f(x,y0)在x0处的导数。
函数有二阶连续偏导数,本身必连续,则满足 f12 = f21
一般情况下,f12不等于f21,但是若函数的二阶偏导数连续,则f12等于f21.条件是连续的二阶偏导数才可以。