RTO技术的发明给VOCs直接焚烧技术(TO,Thermal Oxidizer)带来了新的探索方向,而RTO基本的蓄热焚烧原理决定早期出现的形式为两床式RTO。RTO技术通过蓄热体的蓄热作用极大减少了VOCs升温过程中的能耗,能够为客户带来客观的经济效益。RTO技术经过30多年的发展,经历了三次技术迭代,从早期的两床式RTO、三床式RTO发展到旋转翼RTO。
两床式RTO的一个蓄热室通过VOCs废气进行氧化焚烧,另一个蓄热室通过分解后的高温净化空气,将燃烧热留在蓄热体内,净化空气降温后经烟囱排出。两个蓄热室的蓄热和放热功能交替通过4个互锁高温切换阀实现。两床式RTO能够有效的净化VOCs废气同时降低系统外部能耗,但是其结构简单,阀组切换废气流向时易将蓄热室底层未充分分解的VOCs废气带出蓄热室,影响净化效率。
目前在VOCs处理业界,国内外厂商通常采用的是三床式RTO,该产品在两床式RTO基础上增加了吹扫功能。在三床式RTO阀组切换时,原来通过VOCs废气的蓄热室由吹扫风机送入大量洁净空气,将残余VOCs废气吹入氧化室进行氧化分解。因此,三床式RTO较两床式RTO在净化效率方面有明显的提升。
第一代RTO是单体式结构,以最简单的一进一出为风流导向。
第二代RTO是采用阀门切换式,也是最常见的一种 RTO。其由两个或多个陶瓷填充床, 通过阀门的切换, 改变气流的方向, 从而达到预热VOC 废气的目的。
第三代RTO采用旋转式分流导向,并把炉膛内蓄热体分成多个等份的单体密封单元,通过不停转动把VOC导向至各个蓄热体单元进行氧化。
第四代RTO是最新的治理供热一体化设备,简称BHI(Burning Heating Integrated),采用旋转式阀门分流,把多个蓄热式紧凑结合为一个燃烧室,内置换热器或热风调节装置,达到治理废气的同时满足供热需求。