(1)证明:由条件知:Sk+1≤Sk+1∴SSk+1≤SSk+1.
(2)设两子数列的首项分别为a,b,公差分别为d1,d2.
∵SSk<SSk+1≤SSk+1
∴a+(k-1)d1<b+(k-1)d2≤a+kd1
即a-b<(k-1)(d2-d1)≤a-b+d1
上式左,右端皆为常数,中间的k∈N,故必须d2-d1=0,
∴d1=d2
(3)∵公差为1,∴SSk+1=SSk+1.
又数列{Sn}是严格递增的正整数数列,
∴SSk+1≤SSk+1
∴SSk+1≤SSk+1
又由(1)知∴SSk+1≥SSk+1∴SSk+1=SSk+1.
故Sk+1=Sk+1(k∈N),即数列{Sn}是公差为1的等差数列.