尺规三等分任意角

2024-12-28 15:06:05
推荐回答(4个)
回答1:

三等分角是古希腊几何尺规作图当中的名题,和化圆为方、倍立方问题被并列为古代数学的三大难题之一,而如今数学上已证实了这个问题无解。不过,直到现在,仍然有很多人尝试去解决这条问题,原因是他们对这条题目的具体内容并不明白。而传媒亦基於同样的误解,对一些试图去解决这问题的人大肆报导。

问题定义
本难题的完整题目为:在只用圆规及一把没有刻度的直尺将一个给定角三等分。

所以,若有任何人提出一个用有刻度的直尺去把一个角作三等分,他并未有成功解答这条题目。而事实上,假若使用一把有刻度的直尺,我们甚至可以把一个角作分成任意等份。

简述不可能性之证明
现在已经证明,这个问题是没有办法再给定的条件之下完成的。其理论依据出自於十九世纪发展出来的体论。根据一些简单的论证,任何可以在尺规作图规定下完成的几何物件,其座标都可以用初始单位的根式表示;可是利用体论,我们可以证明,如果 40 度角可以用尺规作图作出,将会导致作出了一个没有办法用根式表示出来的量,这跟刚才的说法矛盾。既然 40 度角不可能被作出,那就表示 120 度角没有办法用尺规作图三等分,三等分角问题因而宣告无解。

回答2:

貌似尺规做图只能二等分任意角吧?
当然特殊的角如90是可以的.
楼主可以看看这个:http://zhidao.baidu.com/question/736196.html
楼主所说的方法好象也只能对待一些特殊角吧.
个人所见,仅供参考

回答3:

a...

回答4:

用弧来可以