怎么用正弦定理求三角形面积?

2024-11-25 12:30:03
推荐回答(2个)
回答1:

设△abc,正弦定理:a/sina=b/sinb=c/sinc,
已知∠b,ab=c,bc=a,求△abc面积。
s=1/2·acsinb。
推导过程:
正弦定理:过a作ad⊥bc交bc于d,
过b作be⊥ac交ac于e,
过c作cf⊥ab交ab于f,
有ad=csinb,
及ad=bsinc,
∴csinb=bsinc,
得b/sinb=c/sinc,
同理:a/sina=b/sinb=c/sinc。
三角形面积:s=1/2·ad·bc,
其中ad=csinb,bc=a,
∴s=1/2·acsinb。
同样:s=1/2·absinc,
s=1/2·bcsina。

回答2:

知道三角形任意两条边a,b
这两条边所夹角为α
则三角形面积S=1/2absin(α)