解:(2)小题,∵1/[1+(cosx)^2]=1/[(sinx)^2+2(cosx)^2]=(secx)^2/[2+(tanx)^2], ∴原式=∫d(tanx)/[2+(tanx)^2]=(1/√2)arctan[tan(x/√2)]+C。 (4)小题,将分母有理化, ∴原式=∫[x^2-x√(x^2-1)]dx=(1/3)[x^3-(x^2-1)^(3/2)]+C。 (5)小题,设(1+x^2)^(1/3)=t,则2xdx=3t^2dt, ∴原式=9∫t^2dt/(1+t)=9∫[t-1+1/(1+t)]dt=9[(1/2)t^2-t+ln丨1+t丨]+C,将t回代即可。供参考。
设x=π-t,∴∫(0,π)xsin³xdx=∫(0,π)(π-t)sin³tdt=π∫(0,π)sin³tdt-∫(0,π)tsin³tdt。
∴2∫(0,π)xsin³xdx=π∫(0,π)sin³xdx,
供参考。