角动量守恒的条件是合外力矩等于零。
角动量守恒定律是物理学的普遍定律之一,反映质点和质点系围绕一点或一轴运动的普遍规律。如果合外力矩零(即M外=0),则L1=L2,即L=常矢量。这就是说,对一固定点o,质点所受的合外力矩为零,则此质点的角动量矢量保持不变。这一结论叫做质点角动量守恒定律。
角动量是描述物体转动状态的量。如质点的质量为m,速度为v,它关于O点的矢径为r,则质点对O点的角动量L=r×mv。
扩展资料:
角动量守恒的具体应用
1、用角动量守恒推算开普勒第二定律
开普勒第二定律:在相等时间内,太阳和运动着的行星的连线所扫过的面积都是相等的。
行星在太阳的向心引力作用下绕日运动,所以行星受到的引力对太阳的力矩为零,那么角动量就华丽丽的守恒了,故有L=rpsinα=常数,由上述推导可之掠面速度A/t为常数,所以相同时间行星绕太阳扫过的面积相等。
2、跳远的时候,起跳之后,以身体中轴为o点,由于脚会产生一个的力矩,如果不向上摆手来抵消这个力矩,运动员就会向前翻转。
3、走路的时候走顺拐了会感觉别扭,因为顺拐合外力矩不为零,会使身体像陀螺一样打转而摔倒,所以甩手可以使角动量守恒维持身体的平衡。
角动量守恒的条件就是和外力矩为零,动量守恒的条件是合外力为零。
动量定理:Mv2-Mv1=Ft
角动量定理:Jω2-Jω1=Mt(其中J为转动惯量,ω为角速度,M为力矩)
动量定理F=dp/dt
(其中F和p均为矢量)
动量守恒即要求dp/dt=0
,可以看出动量守恒条件为系统不受外力或系统所受的外力的合力为零.若系统所受外力的合力不为零,但在某个方向上的分量为零,则在该方向上系统的总动量保。
扩展资料
角动量的定理
1、角动量守恒定律称,在不受外力作用时,体系的总角动量不变。
2、注意角动量守恒是矢量守恒,这代表其三个分量都不随时间而变化。
3、角动量的几何意义是矢径扫过的面积速度的二倍乘以质量。角动量守恒定律指出在合外力矩为零时,物体与中心点的连线单位时间扫过的面积不变,在天体运动中表现为开普勒第二定律。
4、角动量在量子力学中与角度是一对共轭物理量。
参考资料来源:百度百科—角动量守恒