求向量场F(M)=[3x-z,x눀y,-xz눀]穿出闭曲面S的通量,其中S是立方体0≤x≤a,0≦

2025-01-24 14:43:59
推荐回答(1个)
回答1:

向右:F(M)(1,0,0)=3x-z=3a-z>0
竖向平分为间距dz的狭条,微面积adz积分
∫(0,a)(3a-z)adz
=a[3az-z²/2](0,a)
=a[3a²-a²/2]
=5a³/2
向上:
F(M)(0,0,1)=-xz²=-a²x<0,穿入,不计。
向左:
F(M)(-1,0,0)=z-3x=z
积分∫(0,a)zadz=a(z²/2)|(0,a)
=a³/2
向下
F(M)(0,0,-1)=xz²=0
向前
F(M)(0,1,0)=x²y=ax²>0
积分∫(0,a)ax²adx
=a²x³/3|(0,a)
=a^5/3
向后
F(M)(0,-1,0)=-x²y=0
合计。