应用:力学是物理学、天文学和许多工程学的基础,机械、建筑、航天器和船舰等的合理设计都必须以经典力学为基本依据。
机械运动是物质运动的最基本的形式。机械运动亦即力学运动。在力学理论的指导或支持下取得的工程技术成就不胜枚举。最突出的有:以人类登月、建立空间站、 航天飞机等为代表的航天技术。
以速度超过5倍声速的军用飞机、起飞重量超过300t、尺寸达大半个足球场的民航机为代表的航空技术;以单机功率达百万千瓦的汽轮机组为代表的机械工业,可以在大风浪下安全作业的单台价值超过10亿美元的海上采油平台。
扩展资料
力学知识最早起源于对自然现象的观察和在生产劳动中的经验。人们在建筑、灌溉等劳动中使用杠杆、斜面、汲水器等器具,逐渐积累起对平衡物体受力情况的认识。古希腊的阿基米德初步奠定了静力学即平衡理论的基础。
古代人还从对日、月运行的观察和弓箭、车轮等的使用中,了解一些简单的运动规律,如匀速的移动和转动。但是对力和运动之间的关系,只是在欧洲文艺复兴时期以后才逐渐有了正确的认识。16世纪到17世纪间,力学开始发展为一门独立的、系统的学科。
参考资料来源:百度百科-力学
人走路是利用了鞋与地面的摩擦力,向后蹬是给地施加了一个向后的作用力,然后由于物体间作用力是相互的,所以地也给人一个向前的作用力。
给气球充上密度比空气小的气体,如氢气、一氧化碳,气球就会受到空气对它的向上的大于其本身重力的力,然后我们就看到气球飞向空中。
因为重力,我们无论离地面多远,都不必担心会像太空中在空中飘浮,终有落到地面的时刻。又因为重力,人类想要飞的梦想还没实现,而飞船卫星的起飞是花费的巨大的能量才克服重力的影响。
当别人用手打你肩膀的时候,你受到了他给你的作用力,但是你的肩膀也打了他。两个力是相同的,只不过因为压强的不同,产生的效果也就不一样。
力学知识在日常生产、生活和现代科技中应用非常广泛,主要有(1)体育运动方面:如跳高、跳水、体操、铅球、标枪等;(2)天体物理方面:如天体的运行、一些星体的发现、人类的太空活动等;(3)交通安全方面:汽车制动、安全距离、限速等。
1.重力的应用
我们生活在地球上,重力无处不在。如工人师傅在砌墙时,常常利用重锤线来检验墙身是否竖直,这是充分利用重力的方向是竖直向下这一原理;羽毛球的下端做得重一些,这是利用降低重心使球在下落过程中保护羽毛;汽车驾驶员在下坡时关闭发动机还能继续滑行,这是利用重力的作用而节省能源;在农业生产中的抛秧技术也是利用重力的方向竖直向下。假如没有重力,世界不可想象,水不能倒进嘴里,人们起跳后无法落回地面,飞舞的尘土会永远漂浮在空中,整个自然界将是一片混浊。在讲授重力时,要让学生展开热烈的讨论,充分挖掘学生的想象力,知道重力与我们的生产生活实际密切相关。
2.摩擦力的应用
摩擦力是一个重要的力,它在社会生产生活实际中应用非常广泛。如人们行走时,在光滑的地面上行走十分困难,这是因为接触面摩擦太小的缘故;汽车上坡打滑时,在路面上撒些粗石子或垫上稻草,汽车就能顺利前进,这是靠增大粗糙程度而增大摩擦力;鞋底做成各种花纹也是增大接触面的粗糙程度而增大摩擦;滑冰运动员穿的滑冰鞋安装滚珠是变滑动摩擦为滚动摩擦,从而减少摩擦而增大滑行速度;各类机器中加润滑油是为了减小齿轮间的摩擦,保证机器的良好运行。可见,人类的生产生活实际都与摩擦力有关,有益的摩擦要充分利用,有害的摩擦要尽量减少。
3.弹力的应用
利用弹力可进行一系列社会生产生活活动,力有大小、方向、作用点。如高大的建筑需要打牢基础,桥梁设计需要精确计算各部分的受力大小;拔河需要用粗大一些绳子,防止拉力过大导致断裂;高压线的中心要加一根较粗的钢丝,才能支撑较大的架设跨度;运动员在瞬间产生的爆发力等等。
可见,物理力学知识生产和生活实际中是很有用的,从宇宙天体到微观的分子、原子处处存在着各种各样的力,教师只要将课本知识与生产生活实际有机地结合起来,就能极大地激发学生的学习兴趣,从而培养他们树立崇尚科学、研究科学、应用科学精神。
身体上的尺子有很多,步……