正弦定理:设三角形的三边为a b c,他们的对角分别为A B C,外接圆半径为r,则称关系式a/sinA=b/sinB=c/sinC为正弦定理。
余弦定理:设三角形的三边为a b c,他们的对角分别为A B C,则称关系式
a^2=b^2+c^2-2bc*cosA
b^2=c^2+a^2-2ac*cosB
c^2=a^2+b^2-2ab*cosC
扩展资料
证明:
任意三角形ABC,作ABC的外接圆O。
作直径BD交⊙O于D,连接DA.
因为直径所对的圆周角是直角,所以∠DAB=90度,
因为同弧所对的圆周角相等,所以∠D等于∠C。
所以c/sinC=c/sinD=BD=2R。
类似可证其余两个等式。
a/sinA=b/sinB=c/sinC=2R。
参考资料来源:百度百科—正弦定理
百度百科—余弦定理
正弦: A/sina=B/sinb=C/sinc=2R(A B C为角a b c所对的三边,R为三角形外切圆半径)
余弦: cosα=(B^2+C^2-A^2)/2BC
cosb=(A^2+C^2-B^2)/2AC
cosc=(A^2+B^2-C^2)/2AB
正弦定理a/sina=b/sinb=c/sinc,余弦定理cosa=(b^2+c^-a^2)/2bc,cosb,cosc,同理可得