求不定积分(sin根号x⼀根号x)dx

2024-11-24 20:28:37
推荐回答(2个)
回答1:

解:∫sin(√x)dx=2∫√xsin(√x)d(√x)
=2(-√xcos(√x)+∫cos(√x)d(√x))
(应用分部积分法)
=2(-√xcos(√x)+sin(√x))+c
(c是任意常数)

回答2:


(sin√x)/√x
dx
=

2(sin√x)/(2√x)
dx
=
2∫
sin√x
d(√x),d(√x)
=
1/(2√x)
dx
=
2
·
(-
cos√x)
+
C
=
-
2cos√x,用换元u
=
√x做也可以,不过这个很简单而已