解:∫sin(√x)dx=2∫√xsin(√x)d(√x)=2(-√xcos(√x)+∫cos(√x)d(√x))(应用分部积分法)=2(-√xcos(√x)+sin(√x))+c(c是任意常数)
∫(sin√x)/√xdx=∫2(sin√x)/(2√x)dx=2∫sin√xd(√x),d(√x)=1/(2√x)dx=2·(-cos√x)+C=-2cos√x,用换元u=√x做也可以,不过这个很简单而已