1、令F(x)=f(x)-f(x+(b-a)/n)
则 F(a)+F(a+(b-a)/n)+…+F(a+(b-a)(n-1)/n)=0
所以这n项中如果有某项为零,则命题已证;
如这n项中全部为零,则必有正有负,根据零点定理,结论仍证.
2、这是一道中学难度大问题.
令f(x)=|x|^(1/4)+|x|^(1/2)-cos(x)
则f(x)是偶函数,又0不是其根(自行验证),所以根必成对出现.
故我们只考虑大于0的情况;
又cosx小于等于1,所以我们只考虑大于0小于1的情形.
对于0
反复使用罗尔定理。