插值法又称“内插法”,是利用函数f (x)在某区间中插入若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这种方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。
例如:假设与A1对应的数据是B1,与A2对应的数据是B2,现在已知与A对应的数据是B,A介于A1和A2之间,则可以按照(A1-A)/(A1-A2)=(B1-B)/(B1-B2)计算得出A的数值,其中A1、A2、B1、B2、B都是已知数据。根本不必记忆教材中的公式,也没有任何规定必须β1>β2验证如下:根据:(A1-A)/(A1-A2)=(B1-B)/(B1-B2)可知:
(A1-A)=(B1-B)/(B1-B2)×(A1-A2)
A=A1-(B1-B)/(B1-B2)×(A1-A2)
=A1+(B1-B)/(B1-B2)×(A2-A1)
59×(1+r)^-1+59×(1+r)^-2+59×(1+r)^-3+59×(1+r)^-4+(59+1250)×(1+r)^-5=1000(元)这个计算式可以转变为59×(P/A,r,5)+1250×(P/F,r,5)=1000
当r=9%时,59×3.8897+1250×0.6499=229.4923+812.375=1041.8673>1 000元
当r=12%时,59×3.6048+1250×0.5674=212.6832+709.25=921.9332<1000元
因此, 现值 利率
1041.8673 9%
1000 r
921.9332 12%
(1041.8673-1000)/(1041.8673-921.9332)=(9%-r)/(9%-12%)
解之得,r=10%。
将你假设的数字代入,得到方程
(69.65-▲Z)/(250-291)=(▲Z-69)/(291-300)
等式变换,化简,得到(▲Z-69)*41=9*(69.65-▲Z)
所以解得▲Z=69.117
插值法:又称"内插法",是利用函数f (x)在某区间中插入若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这种方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。
公式:(B-A)/(C-A)=(X-5%)/(10%-5%)