如图,在△ABC中,∠C=90°,AC=3,BC=4.O为BC边上一点,以O为圆心,OB为半径作半圆与BC边和AB边分别交

2025-01-24 08:26:22
推荐回答(1个)
回答1:



(本小题满分5分)
证明:(1)连接OE.
∵EF=AF,
∴∠A=∠AEF.
∵OE=OB,
∴∠OEB=∠OBE.
∵∠C=90°,
∴∠A+∠B=90°.
∴∠AEF+∠OEB=90°.
∴∠FEO=90°.
∵OE是⊙O半径,
∴EF是⊙O的切线.

(2)∵∠C=90°,BC=4,AC=3,
∴AB=5.
∵BD是直径,
∴∠DEB=90°.
∴∠DEB=∠C.
∵∠B=∠B,
∴△BED △BCA.
BD
AB
=
DE
AC

3
5
=
DE
3
,DE=
9
5