找到一个单调区间,此区间即是烦函数的定义域。
把函数看作方程: y=f(x)
解方程,求出x用y标识的表达式,x=f^(-1)(y)
将x,y互换即得反函数表达式: y=f^(-1)(x)
例如:求 y=3x+5的反函数,函数在(-∞, +∞)内单调,值域为:(-∞, +∞)
∴ 所以反函数的定义域为:(-∞, +∞),值域为:(-∞, +∞)
由 y=3x+5 解得:x=1/3*y-5/3
∴ 反函数为: y=1/3*x-5/3 x∈(-∞, +∞)
例如 y=x^2,x=正负根号y,则f(x)的反函数是正负根号x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。
扩展资料:
一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1)(x) 。反函数y=f ^(-1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。
一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f (y)或者y=f﹣¹(x)。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。注意:上标"−1"指的并不是幂。
在证明这个定理之前先介绍函数的严格单调性。
设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点x1和x2,当x1
证明:设f在D上严格单增,对任一y∈f(D),有x∈D使f(x)=y。
而由于f的严格单增性,对D中任一x'
任取f(D)中的两点y1和y2,设y1 若此时x1≥x2,根据f的严格单增性,有y1≥y2,这和我们假设的y1 因此x1 如果f在D上严格单减,证明类似。 参考资料:百度百科---反函数
实际上,求函数定义域与求它的反函数定义域,从方法上讲是一样的。因为反函数也是“函数“。
如果已知,或者可以求得原函数值域,那么反函数的定义域就是原函数的值域。因为两个互为反函数的函数定义域与值域互换。
否则,直接求反函数定义域。
f(x)的定义域就是f^(-1)(x)的值域,f(x)的值域就是f^(-1)(x)的定义域