不定积分∫sinx눀dx怎么求

2024-11-26 21:31:51
推荐回答(5个)
回答1:

结果如下图:

解题过程如下(因有专有公式,故只能截图):

扩展资料


求函数积分的方法:

设f(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C。

其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分。

若f(x)在[a,b]上恒为正,可以将定积分理解为在Oxy坐标平面上,由曲线(x,f(x))、直线x=a、x=b以及x轴围成的面积值(一种确定的实数值)。

回答2:

不定积分∫sinx²dx,这个是菲涅尔积分函数,具体解法如下:

扩展资料

不定积分的公式

1、∫ a dx = ax + C,a和C都是常数

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1

3、∫ 1/x dx = ln|x| + C

4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + C

6、∫ cosx dx = sinx + C

7、∫ sinx dx = - cosx + C

8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

9、∫ tanx dx = - ln|cosx| + C = ln|secx| + C

回答3:

这个是菲涅尔积分函数

具体可参考

https://en.wikipedia.org/wiki/Fresnel_integral

回答4:

不可积,除非用级数展开再积

回答5:

∫(sinx)²dx
=∫(1-cos2x)/2dx
=(1/2)[∫dx-∫cos2xdx]
=x/2-(sin2x)/4+C