hadoop,spark在虚拟机集群里跑还有性能上的优势吗

2024-12-26 10:25:07
推荐回答(2个)
回答1:

作为分布式计算平台,性能是非常重要的一个指标,但绝对不是唯一一个指标。单纯从性能角度上来讲,硬件资源固定,虚拟化增大了开销,必然有所降低。但是虚拟化会带来一些其他方面的功能。
资源隔离。有些集群是专用的,比如给你三台设备只跑一个spark,那还算Ok。但在很多规模很小的团体中,在有限的硬件设备的情况下,又要跑spark,比如又要跑zookeeper、kafka等等,这个时候,我们希望它们之间是不会互相干扰的。假设你spark的配置没做好,内存占用太大了,你总不希望把你好端端zookeeper给影响得挂掉(躺枪_(:з」∠)_)。那么此时虚拟机或者容器技术可以对物理资源进行隔离,防止这种情况出现。
快速部署,简化配置。无论对于新手还是老手来说,干这行非常痛苦的一点是各种框架的配置和部署,大量重复工作,又不怎么需要动脑子。所以你当然希望有一种方式,直接把你已经配置好的环境保存下来,作为一个镜像,然后当集群要扩展了,比如又增加了一个物理设备,你希望在上面虚拟化成三台虚拟机,两台运行spark,一台运行zookeeper,那简单了,把spark的镜像copy两份,zookeeper的镜像copy一份,网络配置好,开起来,一切都是那么潇洒...
调度单元。更高级的应用中,数据平台向整个团体或者公众提供服务。用户A希望有资源运行自己的应用,用户B也希望运行自己的应用,无论从安全角度还是管理角度上来说你都不希望他们之间是混杂的,这时候虚拟机也是一种解决方案。如果做一个高级点的调度器,当感知到spark工作压力非常大的时候启动一个zk镜像,反之减少一个镜像……这些功能在有虚拟机进行隔离时都会简单很多很多。
随便想了几个理由,应该还有很多,虚拟化这方面的专家应该更有发言权,毕竟干分布式计算的也只是虚拟化技术的受益者之一。

问题中谈到了性能,当然虚拟化的引入比裸奔性能上一定会有影响,如果影响很大的话,在做架构设计的时候就要根据实际需求进行取舍;然而比如像container,docker等轻量级虚拟化技术的出现,使它对性能的影响被压缩到了一个很小的地步,对于大多数分布式系统来说,这点性能损耗并不会有太大的影响……然后你懂的……

回答2:

Spark已经取代Hadoop成为最活跃的开源大数据项目,但是,在选择大数据框架时,企业不能因此就厚此薄彼

近日,著名大数据专家Bernard Marr在一篇文章中分析了Spark和 Hadoop 的异同

Hadoop和Spark均是大数据框架,都提供了一些执行常见大数据任务的工具,但确切地说,它们所执行的任务并不相同,彼此也并不排斥

虽然在特定的情况下,Spark据称要比Hadoop快100倍,但它本身没有一个分布式存储系统

而分布式存储是如今许多大数据项目的基础,它可以将 PB 级的数据集存储在几乎无限数量的普通计算机的硬盘上,并提供了良好的可扩展性,只需要随着数据集的增大增加硬盘

因此,Spark需要一个第三方的分布式存储,也正是因为这个原因,许多大数据项目都将Spark安装在Hadoop之上,这样,Spark的高级分析应用程序就可以使用存储在HDFS中的数据了

与Hadoop相比,Spark真正的优势在于速度,Spark的大部分操作都是在内存中,而Hadoop的MapReduce系统会在每次操作之后将所有数据写回到物理存储介质上,这是为了确保在出现问题时能够完全恢复,但Spark的弹性分布式数据存储也能实现这一点

另外,在高级数据处理(如实时流处理、机器学习)方面,Spark的功能要胜过Hadoop

在Bernard看来,这一点连同其速度优势是Spark越来越受欢迎的真正原因

实时处理意味着可以在数据捕获的瞬间将其提交给分析型应用程序,并立即获得反馈

在各种各样的大数据应用程序中,这种处理的用途越来越多,比如,零售商使用的推荐引擎、制造业中的工业机械性能监控

Spark平台的速度和流数据处理能力也非常适合机器学习算法,这类算法可以自我学习和改进,直到找到问题的理想解决方案

这种技术是最先进制造系统(如预测零件何时损坏)和无人驾驶汽车的核心

Spark有自己的机器学习库MLib,而Hadoop系统则需要借助第三方机器学习库,如Apache Mahout

实际上,虽然Spark和Hadoop存在一些功能上的重叠,但它们都不是商业产品,并不存在真正的竞争关系,而通过为这类免费系统提供技术支持赢利的公司往往同时提供两种服务

例如,Cloudera 就既提供 Spark 服务也提供 Hadoop服务,并会根据客户的需要提供最合适的建议

Bernard认为,虽然Spark发展迅速,但它尚处于起步阶段,安全和技术支持基础设施方还不发达,在他看来,Spark在开源社区活跃度的上升,表明企业用户正在寻找已存储数据的创新用法