设A=1/2+1/3+1/4+1/5+1/6,且B=1/2+1/3+1/4+1/5
则有原式=(1-B)A-(1-A)B
=A-AB-(B-AB)
=A-AB-B+AB
=A-B
将上述值代入此式
当A=1/2+1/3+1/4+1/5+1/6,B=1/2+1/3+1/4+1/5时
原式=A-B=1/6
~师范附小李为您解答~
~如果您满意请按下采纳,您的采纳是我前进的动力~
(1 - 1/2 - 1/3 - 1/4 - 1/5)(1/2 + 1/3 + 1/4 + 1/5 + 1/6) - (1 - 1/2 - 1/3 - 1/4 - 1/5 - 1/6)(1/2 + 1/3 + 1/4 + 1/5)
= [1 - (1/2 + 1/3 + 1/4 + 1/5)] * [(1/2 + 1/3 + 1/4 + 1/5) + 1/6] - [1 - (1/2 + 1/3 + 1/4 + 1/5) - 1/6] * (1/2 + 1/3 + 1/4 + 1/5)
避免眼睛混乱,假设 a = (1/2 + 1/3 + 1/4 + 1/5)
= (1 - a) * (a + 1/6) - (1 - a - 1/6) * a
= (1 - a) * a + (1-a) * (1/6) - (1-a) * a + (1/6) * a
= 1/6 - 1/6* a + 1/6 * a
= 1/6
是这题吗?(1-1/2-1/3-1/4-1/5)(1/2+1/3+1/4+1/5+1/6)-(1-1/2-1/3-1/4-1/5-1/6)(1/2+1/3+1/4+1/5)
解答:令a=1-1/2-1/3-...-1/6;b=1/2+1/3+...+1/6;
则原式=(a+1/6)×b-a×(b-1/6);
=ab+b/6-ab+a/6;
=(a+b)/6;
=1/6;