cos(a-b⼀2)=-1⼀9 sin(a⼀2-b)=2⼀3 且π⼀2<a<π 0<b<π⼀2 求cos (a+b)⼀2的值

2024-11-29 18:43:01
推荐回答(1个)
回答1:

cos[(a+b)/2]=cos[(a-b/2)-(a/2-b)]
=cos(a-b/2)cos(a/2-b)+sin(a/2-b)sin(a-b/2)
cos(a-b/2)=-1/9,sin(a/2-b)=2/3
且π/2π所以cos(a/2-b)=根号[1-(2/3)^2]=(根号5)/3
sin(a-b/2)=根号[1-(1/9)^2]=(根号80)/9
cos(a-b/2)cos(a/2-b)+sin(a/2-b)sin(a-b/2)
=-1/9*(根号5)/3+(根号80)/9*2/3
=7(根号5)/27