(2010?徐州一模)如图,⊙O是△ABC的外接圆,BD为圆O的直径,AB=AC,AD交BC于E,ED=2AE.(1)求证:AB2

2024-11-21 19:00:30
推荐回答(1个)
回答1:

证明:(1)∵AB=AC,

AB
AC

∴∠ABC=∠ADB.(1分)
又∵∠BAD=∠BAD,
∴△ABE∽△ADB,(2分)
AB
AD
=
AE
AB
?AB2=AD?AE.(3分)
(2)∵BD为⊙O的直径,
∴∠BAD=90°,
又∵DE=2AE,
∴AE=
1
3
AD,
∴AB2=AD?
1
3
AD.
∴AB=
3
3
AD.(4分)
AB
AD
3
3

∴tan∠BDA=
3
3

故∠BDA=30°.(5分)
(3)证明:连接OA,
∵OA=OD=OB,又∠D=30°,
∴∠AOB=60°,(6分)
又∵△AOB为正三角形,
∴∠OAB=60°,AB=OB,
∴∠AOB=60°,(7分)
∵FB=FO,
∴AB=BF,
∴∠FAB=30°,
∴∠FAO=∠FAB=∠BAO=30°+60°=90°.
即FA是⊙O的切线.(8分)