(2009?重庆)如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,

2024-11-28 22:55:16
推荐回答(1个)
回答1:

解:连接CF;
∵△ABC是等腰直角三角形,
∴∠FCB=∠A=45°,CF=AF=FB;
∵AD=CE,
∴△ADF≌△CEF(SAS);
∴EF=DF,∠CFE=∠AFD;
∵∠AFD+∠CFD=90°,
∴∠CFE+∠CFD=∠EFD=90°,
∴△EDF是等腰直角三角形(故①正确).
当D、E分别为AC、BC中点时,四边形CDFE是正方形(故②错误).
∵△ADF≌△CEF,
∴S△CEF=S△ADF∴S四边形CEFD=S△AFC,(故④正确).
由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;
即当DF⊥AC时,DE最小,此时DF=

1
2
BC=4.
∴DE=
2
DF=4
2
(故③错误).
当△CDE面积最大时,由④知,此时△DEF的面积最小.
此时S△CDE=S四边形CEFD-S△DEF=S△AFC-S△DEF=16-8=8(故⑤正确).
故选:B.