设X1>X2>0,∴X1/X2>1依题意F﹙X1/X2﹚=F﹙X1﹚-F﹙X2﹚<0,∴F﹙X﹚在﹙0,+∞﹚上递减。令X1=X2=1∴F﹙1﹚=F﹙1﹚-F﹙1﹚∴F﹙1﹚=0 令X1=1,X2=3∴F﹙1/3﹚=F﹙1﹚-F﹙3﹚=1 令X1=3,X2=1/3,∴F﹙9﹚=-1-1=-2 不等式即为F﹙X�0�5-3X-1﹚<F﹙9﹚,又∵F﹙X﹚在﹙0,+∞﹚单调递减,∴所解不等式化为X�0�5-3X-1>9﹙此时X�0�5-3X-1显然>0﹚ 解得-2<X<5
解:由f(x�0�5-3x-1)<-2 ,f(3)= -1→f(x�0�5-3x-1)<2f(3)→f[(x�0�5-3x-1)/9]<0→(x�0�5-3x-1)/9>1
解得:x>5或x<-2